cda

数字化人才认证

首页 > 行业图谱 >

SPSS中的转换函数和缺失值函数
2017-07-03
SPSS中的转换函数和缺失值函数 转换函数 NUMBER(strexpr,format)数值。以数字形式返回字符串表达式 strexpr 的值。第二个参数 format 是用于读取 strexpr 的数值格式。因此,如果 NUMBER(name,f8)中 ...

SPSS 缺失值 : 缺失值 分析

SPSS缺失值缺失值分析
2017-11-02
SPSS缺失值:缺失值分析 一、缺失值: 具有缺失值的个案会引发严重的问题,因为典型的建模过程会简单地从分析中丢弃这些个案。如果存在少量缺失值(大约低于个案总数的5%),且这些值可以被认为随 ...

【CDA干货】商业数据分析应用框架:从数据到决策的全链路指南

【CDA干货】商业数据分析应用框架:从数据到决策的全链路指南
2026-01-20
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单操作,若缺乏系统框架支撑,极易陷入“数据过载却无洞察”“分析与业务脱节”的困境。 ...

【CDA干货】让定量报告“活”起来:可视化易读性提升全指南

【CDA干货】让定量报告“活”起来:可视化易读性提升全指南
2026-01-20
定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹没。可视化作为连接数据与解读的桥梁,能将抽象数值转化为直观图形,降低阅读门槛、强 ...

CDA数据分析师实战:决策树分析的业务应用与落地指南

CDA数据分析师实战:决策树分析的业务应用与落地指南
2026-01-20
在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判断交易是否存在欺诈风险、评估客户授信等级等。决策树(Decision Tree)作为经典的监督 ...

【CDA干货】Python实操:造价清单汇总分类

【CDA干货】Python实操:造价清单汇总分类
2026-01-19
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶手安装等)的构件,人工汇总不仅效率低下,还易因分项繁杂、数据量大出现漏算、错算问 ...

【CDA干货】数据清洗核心:错误数据类型全解析与处理指南

【CDA干货】数据清洗核心:错误数据类型全解析与处理指南
2026-01-19
数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际业务中,错误数据的存在往往具有隐蔽性与多样性,若无法精准识别并妥善处理,不仅会导 ...

CDA数据分析师实战:聚类分析的业务应用与落地指南

CDA数据分析师实战:聚类分析的业务应用与落地指南
2026-01-19
在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量用户行为数据无明确分层标签、产品属性数据无法快速定位同类群体、市场调研数据难以识 ...

【CDA干货】数据分析全流程避坑指南:常见问题、成因与解决方案

【CDA干货】数据分析全流程避坑指南:常见问题、成因与解决方案
2026-01-15
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整,最终却无法产出有效洞察,甚至误导决策。这背后,往往是数据分析全流程中潜藏的各类问 ...

CDA数据分析师实战:主成分分析的业务应用与落地指南

CDA数据分析师实战:主成分分析的业务应用与落地指南
2026-01-15
在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时长、加购次数”等10+个行为指标,市场调研涵盖“价格敏感度、品牌偏好”等多个维度,这 ...

CDA数据分析师实战:逻辑回归的业务应用与落地指南

CDA数据分析师实战:逻辑回归的业务应用与落地指南
2026-01-14
在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判断客户是否存在违约风险”“识别用户是否为流失高潜人群”。这类需求的核心是“将数据 ...

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变
2026-01-13
在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在重复、缺失、异常、格式混乱等问题,这些“脏数据”会直接导致分析结果失真,甚至误导 ...

CDA数据分析师实战:线性回归的业务应用与落地指南

CDA数据分析师实战:线性回归的业务应用与落地指南
2026-01-13
在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测下月销售额”“分析哪些因素对用户消费金额影响最大”“评估营销策略对销量的贡献度” ...

CDA数据分析师实战:相关系数的业务应用与落地指南

CDA数据分析师实战:相关系数的业务应用与落地指南
2026-01-12
在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长与消费金额是否相关”“广告投放量与销售额是否存在关联”“产品评分与复购率是否有联 ...

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南
2026-01-09
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户,并找到流失背后的核心原因,进而制定针对性的挽留策略,已成为企业精细化运营的核心诉 ...

【CDA干货】线性回归在多因子选股中的应用全解析

【CDA干货】线性回归在多因子选股中的应用全解析
2026-01-09
在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流动性等),筛选出综合因子表现优异的股票,构建具有超额收益潜力的投资组合。而线性回 ...

【CDA干货】数据库历史数据分析全流程指南:从数据到决策

【CDA干货】数据库历史数据分析全流程指南:从数据到决策
2026-01-08
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度信息。通过科学分析这些历史数据,既能复盘过往业务表现、定位问题根源,也能挖掘潜在 ...

【CDA干货】电商公司数据分析师必备技能全解析

【CDA干货】电商公司数据分析师必备技能全解析
2026-01-08
在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的“导航员”——他们通过挖掘订单、用户、商品、运营活动等数据中的规律,为GMV提升、 ...

CDA数据分析师实战核心:统计制图的逻辑、方法与价值传递

CDA数据分析师实战核心:统计制图的逻辑、方法与价值传递
2026-01-08
在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通的“画图美化”,统计制图以统计分析逻辑为内核,以数据可视化规则为支撑,将复杂的统 ...

【CDA干货】Excel制作成绩分布图全指南:步骤、优化与解读

【CDA干货】Excel制作成绩分布图全指南:步骤、优化与解读
2026-01-07
在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分占比、整体分布形态(如是否正态分布),为教学评估、个性化辅导提供数据支撑。Excel作 ...

OK
客服在线
立即咨询