cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南
2025-10-29
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个开发者都会面临的核心决策。这两个参数直接决定了模型的 “容量”—— 即拟合复杂数据 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

【CDA干货】卷积层之后:归一化与激活函数的取舍之道

【CDA干货】卷积层之后:归一化与激活函数的取舍之道
2025-10-24
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都会面临的基础决策。这三者的组合并非随意搭配,而是深刻影响模型训练稳定性、收敛速度 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术
2025-10-23
在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真实状态(如无人机的位置与速度、化工反应釜的温度与压力、汽车的行驶轨迹)。卡尔曼滤 ...

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界
2025-10-22
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4,神经网络的规模似乎正朝着 “越大越好” 的方向演进。但事实果真如此吗?神经网络的 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题
2025-10-20
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集中在几百元)、居民收入水平(高收入群体拉高均值,分布右偏)、产品故障间隔时间(多 ...

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践
2025-10-20
在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短视频→停留 3 秒划走→搜索同款→收藏作者”,再到金融 APP 的 “登录→查询余额→浏览 ...

【CDA干货】深度解析 INSERT INTO SELECT 底层原理:从执行流程到性能优化

【CDA干货】深度解析 INSERT INTO SELECT 底层原理:从执行流程到性能优化
2025-10-16
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数据插入到另一个表,无需中间文件中转,广泛应用于数据归档、报表生成、分表同步等场景 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧
2025-10-10
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转为字符串用于报表展示,亦或是调整字符编码适配不同系统,都离不开专门的转换工具。CON ...

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导
2025-10-10
在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为筛选关键影响因素、优化工艺参数的核心工具。但实际操作中,常出现 “试验结束后,通过 ...

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南
2025-09-30
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之一 —— 无论是筛选 “性别为男的用户”“销售额超过 1000 的订单”,还是 “包含‘北 ...

【CDA干货】球面卷积神经网络(SCNN)

【CDA干货】球面卷积神经网络(SCNN)
2025-09-30
球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通过重构 “卷积核设计、数据采样、特征聚合” 的底层逻辑,让神经网络能够适配球面的非 ...

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”
2025-09-30
在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股价波动趋势”,零售门店想确定 “明日库存该备多少”。这些问题的答案,藏在 “时间序 ...

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界
2025-09-29
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分类标签,通过数据自身的相似性将样本划分为若干组(聚类),广泛用于客户分群、产品归 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

OK
客服在线
立即咨询