cda

数字化人才认证

首页 > 行业图谱 >

学习泛化能力的关键因素
2024-12-06
数据分析的世界充满了千变万化,而学会泛化能力是每位数据分析师追求的终极目标。在推荐系统中,协同过滤算法的特征提取起着至关重要的作用,它们扮演着连接用户行为和个性化推荐之间的桥梁。 协同过滤算法特征提取 ...

如何评估预测模型的准确性和 泛化能力 ?

如何评估预测模型的准确性和泛化能力
2024-03-21
预测模型的准确性和泛化能力评估是机器学习中非常重要的任务。这些评估指标可以帮助我们了解模型在未知数据上的表现,并决定是否适用于实际应用。在下面的文章中,我将介绍一些常用的方法来评估预测模型的准确性和 ...
为什么神经网络具有泛化能力
2023-03-30
神经网络是一种计算模型,它通过学习输入数据的特征,自动提取和表达数据中的规律,并能够推广到未见过的数据中。这种能力被称为泛化能力。 神经网络的泛化能力可以归结为以下几个原因: 模型参数的优化 神经网络 ...

正则化---提高深度学习模型的 泛化能力

正则化---提高深度学习模型的泛化能力
2020-07-23
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。 一、首先来回顾一下什么是泛化能力 泛化能力(generalization ability),百科给出的定义是:机器 ...

机器学习中的 泛化能力 指的是什么?

机器学习中的泛化能力指的是什么?
2020-07-03
概括地说,泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为 ...

交叉验证:评估模型的 泛化能力 表现

交叉验证:评估模型的泛化能力表现
2020-06-16
注明:本文章所有代码均来自scikit-learn官方网站 在实际情况中,如果一个模型要上线,数据分析员需要反复调试模型,以防止模型仅在已知数据集的表现较好,在未知数据集上的表现较差。即要确保模型的泛化能力 ...

神经网络的 泛化能力 差吗?

神经网络的泛化能力差吗?
2020-05-21
泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力。 通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可 ...

CDA数据分析师实战:决策树分析的业务应用与落地指南

CDA数据分析师实战:决策树分析的业务应用与落地指南
2026-01-20
在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判断交易是否存在欺诈风险、评估客户授信等级等。决策树(Decision Tree)作为经典的监督 ...

CDA数据分析师实战:主成分分析的业务应用与落地指南

CDA数据分析师实战:主成分分析的业务应用与落地指南
2026-01-15
在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时长、加购次数”等10+个行为指标,市场调研涵盖“价格敏感度、品牌偏好”等多个维度,这 ...

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南
2026-01-09
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户,并找到流失背后的核心原因,进而制定针对性的挽留策略,已成为企业精细化运营的核心诉 ...

【CDA干货】线性回归在多因子选股中的应用全解析

【CDA干货】线性回归在多因子选股中的应用全解析
2026-01-09
在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流动性等),筛选出综合因子表现优异的股票,构建具有超额收益潜力的投资组合。而线性回 ...

CDA数据分析师核心技能:特征处理的全流程实战指南

CDA数据分析师核心技能:特征处理的全流程实战指南
2026-01-06
在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模型训练或深度分析——要么特征维度冗余、要么数据分布不均、要么无法精准刻画业务逻辑 ...

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析
2026-01-05
在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在某一轮骤升,甚至出现NaN(非数字)或无穷大的情况。这种现象不仅会中断训练进程,更 ...

CDA数据分析师实战指南:量化策略分析全流程拆解与落地

CDA数据分析师实战指南:量化策略分析全流程拆解与落地
2025-12-30
在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策效率、挖掘核心价值的关键工具。CDA(Certified Data Analyst)数据分析师作为量化策 ...

【CDA干货】数学界中的统计学高级算法:原理、应用与价值

【CDA干货】数学界中的统计学高级算法:原理、应用与价值
2025-12-26
统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、非线性、异构数据的分析需求。数学界由此衍生出一系列统计学高级算法,这些算法以深厚 ...

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地
2025-12-25
在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势,都能为业务规划提供关键支撑。Power BI作为主流的商业智能工具,不仅具备强大的数据 ...

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破
2025-12-17
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、工业场景的故障样本、科研中的初期实验数据等,都可能受限于采集成本或样本稀缺性,只 ...

【CDA干货】神经网络损失函数:没有“最佳值”,但有“最优解”

【CDA干货】神经网络损失函数:没有“最佳值”,但有“最优解”
2025-12-02
在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却在损失降至0.1还是0.01时陷入迷茫;资深开发者则明白,纠结“具体降到多少”本身就是 ...

【CDA干货】解密LSTM预测结果:为何有时相同,有时不同?

【CDA干货】解密LSTM预测结果:为何有时相同,有时不同?
2025-12-01
在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用同一模型、同一输入数据,多次预测的结果却可能存在差异;而有时,预测结果又能完全复 ...

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南
2025-11-10
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少会导致 “欠拟合”(模型容量不足,无法捕捉复杂规律),个数过多则会引发 “过拟合” ...

OK
客服在线
立即咨询