
作者:刘早起
来源:早起Python
大家好,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看!
01数据查找
问:如何获得两个数组之间的相同元素
输入:
import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore") arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.intersect1d(arr1,arr2)
02数据修改
问:如何从一个数组中删除另一个数组存在的元素
输入:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.setdiff1d(arr1,arr2)
03数据修改
问:如何修改一个数组为只读模式
输入:
arr1 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr1.flags.writeable = False
04数据转换
问:如何将list转为numpy数组
输入:
a = [1,2,3,4,5]
答案:
a = [1,2,3,4,5] np.array(a)
05数据转换
输入:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
答案:
df.values
06数据分析
输入:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1的平均数为:%s" %np.mean(arr1)) print("arr1的中位数为:%s" %np.median(arr1)) print("arr1的方差为:%s" %np.var(arr1)) print("arr1的标准差为:%s" %np.std(arr1)) print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2)) print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
07数据抽样
问:如何使用numpy进行概率抽样
arr = np.array([1,2,3,4,5])
输入:
arr = np.array([1,2,3,4,5]) np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])
答案:
08数据创建
问:如何为数据创建副本
输入:
arr = np.array([1,2,3,4,5])
答案:
#对副本数据进行修改,不会影响到原始数据 arr = np.array([1,2,3,4,5]) arr1 = arr.copy()
09数据切片
问:如何对数组进行切片
输入:
arr = np.arange(10)
备注:从索引2开始到索引8停止,间隔为2
答案:
arr = np.arange(10) a = slice(2,8,2) arr[a] #等价于arr[2:8:2]
10字符串操作
问:如何使用NumPy操作字符串
输入:
str1 = ['I love'] str2 = [' Python']
答案:
#拼接字符串 str1 = ['I love'] str2 = [' Python'] print(np.char.add(str1,str2)) #大写首字母 str3 = np.char.add(str1,str2) print(np.char.title(str3))
以上就是我总结的NumPy经典20题中的10题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路,下一篇继续给你列出另外10题哈!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30