京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源:DeepHub IMBA
作者: P**nHub兄弟网站
学习如何通过剪枝来使你的模型变得更小
剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。
在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。
我们的第一步导入一些工具、包:
最后,初始化TensorBoard,这样就可以将模型可视化:
import os import zipfile import tensorflow as tf import tensorflow_model_optimization as tfmot from tensorflow.keras.models import load_model from tensorflow import keras %load_ext tensorboard
在这个实验中,我们将使用scikit-learn生成一个回归数据集。之后,我们将数据集分解为训练集和测试集:
from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=10000, n_features=10, random_state=0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
我们将创建一个简单的神经网络来预测目标变量y,然后检查均值平方误差。在此之后,我们将把它与修剪过的整个模型进行比较,然后只与修剪过的Dense层进行比较。
接下来,在30个训练轮次之后,一旦模型停止改进,我们就使用回调来停止训练它。
early_stop = keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=30)
我们打印出模型概述,以便与运用剪枝技术的模型概述进行比较。
model = setup_model() model.summary()
让我们编译模型并训练它。
tf.keras.utils.plot_model( model, to_file=”model.png”, show_shapes=True, show_layer_names=True, rankdir=”TB”, expand_nested=True, dpi=96, )
现在检查一下均方误差。我们可以继续到下一节,看看当我们修剪整个模型时,这个误差是如何变化的。
from sklearn.metrics import mean_squared_error predictions = model.predict(X_test) print(‘Without Pruning MSE %.4f’ % mean_squared_error(y_test,predictions.reshape(3300,))) Without Pruning MSE 0.0201
当把模型部署到资源受限的边缘设备(如手机)时,剪枝等优化模型技术尤其重要。
我们将上面的MSE与修剪整个模型得到的MSE进行比较。第一步是定义剪枝参数。权重剪枝是基于数量级的。这意味着在训练过程中一些权重被转换为零。模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。
预期的参数是剪枝计划、块大小和块池类型。
from tensorflow_model_optimization.sparsity.keras import ConstantSparsity
pruning_params = {
'pruning_schedule': ConstantSparsity(0.5, 0),
'block_size': (1, 1),
'block_pooling_type': 'AVG'
}
现在,我们可以应用我们的剪枝参数来修剪整个模型。
from tensorflow_model_optimization.sparsity.keras import prune_low_magnitude model_to_prune = prune_low_magnitude( keras.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)), tf.keras.layers.Dense(1, activation='relu') ]), **pruning_params)
我们检查模型概述。将其与未剪枝模型的模型进行比较。从下图中我们可以看到整个模型已经被剪枝 —— 我们将很快看到剪枝一个稠密层后模型概述的区别。
model_to_prune.summary()
在TF中,我们必须先编译模型,然后才能将其用于训练集和测试集。
model_to_prune.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’])
由于我们正在使用剪枝技术,所以除了早期停止回调函数之外,我们还必须定义两个剪枝回调函数。我们定义一个记录模型的文件夹,然后创建一个带有回调函数的列表。
tfmot.sparsity.keras.UpdatePruningStep()
使用优化器步骤更新剪枝包装器。如果未能指定剪枝包装器,将会导致错误。
tfmot.sparsity.keras.PruningSummaries()
将剪枝概述添加到Tensorboard。
log_dir = ‘.models’ callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # Log sparsity and other metrics in Tensorboard. tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir), keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=10) ]
有了这些,我们现在就可以将模型与训练集相匹配了。
model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0)
在检查这个模型的均方误差时,我们注意到它比未剪枝模型的均方误差略高。
prune_predictions = model_to_prune.predict(X_test) print(‘Whole Model Pruned MSE %.4f’ % mean_squared_error(y_test,prune_predictions.reshape(3300,))) Whole Model Pruned MSE 0.1830
现在让我们实现相同的模型,但这一次,我们将只剪枝稠密层。请注意在剪枝计划中使用多项式衰退函数。
from tensorflow_model_optimization.sparsity.keras import PolynomialDecay
layer_pruning_params = {
'pruning_schedule': PolynomialDecay(initial_sparsity=0.2,
final_sparsity=0.8, begin_step=1000, end_step=2000),
'block_size': (2, 3),
'block_pooling_type': 'MAX'
}
model_layer_prunning = keras.Sequential([
prune_low_magnitude(tf.keras.layers.Dense(128, activation='relu',input_shape=(X_train.shape[1],)),
**layer_pruning_params),
tf.keras.layers.Dense(1, activation='relu')
])
从概述中我们可以看到只有第一个稠密层将被剪枝。
model_layer_prunning.summary()
然后我们编译并拟合模型。
model_layer_prunning.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’]) model_layer_prunning.fit(X_train,y_train,epochs=300,validation_split=0.1,callbacks=callbacks,verbose=0)
现在,让我们检查均方误差。
layer_prune_predictions = model_layer_prunning.predict(X_test) print(‘Layer Prunned MSE %.4f’ % mean_squared_error(y_test,layer_prune_predictions.reshape(3300,))) Layer Prunned MSE 0.1388
由于我们使用了不同的剪枝参数,所以我们无法将这里获得的MSE与之前的MSE进行比较。如果您想比较它们,那么请确保剪枝参数是相同的。在测试时,对于这个特定情况,layer_pruning_params给出的错误比pruning_params要低。比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。
现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。
def train_save_weights():
model = setup_model()
model.compile(optimizer='adam',
loss=tf.keras.losses.mean_squared_error,
metrics=['mae', 'mse'])
model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=callbacks,verbose=0)
model.save_weights('.models/friedman_model_weights.h5')
train_save_weights()
我们将建立我们的基础模型,并加载保存的权重。然后我们对整个模型进行剪枝。我们编译、拟合模型,并在Tensorboard上将结果可视化。
base_model = setup_model()
base_model.load_weights('.models/friedman_model_weights.h5') # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)
model_for_pruning.compile(
loss=tf.keras.losses.mean_squared_error,
optimizer='adam',
metrics=['mae', 'mse']
)
model_for_pruning.fit(
X_train,
y_train,
callbacks=callbacks,
epochs=300,
validation_split = 0.2,
verbose=0
)
%tensorboard --logdir={log_dir}
以下是TensorBoard的剪枝概述的快照。
在TensorBoard上也可以看到其它剪枝模型概述
现在让我们定义一个计算模型大小函数
def get_gzipped_model_size(model,mode_name,zip_name): # Returns size of gzipped model, in bytes. model.save(mode_name, include_optimizer=False) with zipfile.ZipFile(zip_name, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(mode_name) return os.path.getsize(zip_name)
现在我们定义导出模型,然后计算大小。
对于剪枝过的模型,tfmot.sparsity.keras.strip_pruning()用来恢复带有稀疏权重的原始模型。请注意剥离模型和未剥离模型在尺寸上的差异。
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning,'.models/model_for_pruning.h5','.models/model_for_pruning.zip')))
print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export,'.models/model_for_export.h5','.models/model_for_export.zip')))
Size of gzipped pruned model without stripping: 6101.00 bytes Size of gzipped pruned model with stripping: 5140.00 bytes
对这两个模型进行预测,我们发现它们具有相同的均方误差。
model_for_prunning_predictions = model_for_pruning.predict(X_test)
print('Model for Prunning Error %.4f' % mean_squared_error(y_test,model_for_prunning_predictions.reshape(3300,)))
model_for_export_predictions = model_for_export.predict(X_test)
print('Model for Export Error %.4f' % mean_squared_error(y_test,model_for_export_predictions.reshape(3300,)))
Model for Prunning Error 0.0264 Model for Export Error 0.0264
您可以继续测试不同的剪枝计划如何影响模型的大小。显然这里的观察结果不具有普遍性。也可以尝试不同的剪枝参数,并了解它们如何影响您的模型大小、预测误差/精度,这将取决于您要解决的问题。
为了进一步优化模型,您可以将其量化。如果您想了解更多,请查看下面的回购和参考资料。
作者:Derrick Mwiti
deephub翻译组:钱三一
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24