
文章来源:DeepHub IMBA
作者: P**nHub兄弟网站
学习如何通过剪枝来使你的模型变得更小
剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。
在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。
我们的第一步导入一些工具、包:
最后,初始化TensorBoard,这样就可以将模型可视化:
import os import zipfile import tensorflow as tf import tensorflow_model_optimization as tfmot from tensorflow.keras.models import load_model from tensorflow import keras %load_ext tensorboard
在这个实验中,我们将使用scikit-learn生成一个回归数据集。之后,我们将数据集分解为训练集和测试集:
from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=10000, n_features=10, random_state=0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
我们将创建一个简单的神经网络来预测目标变量y,然后检查均值平方误差。在此之后,我们将把它与修剪过的整个模型进行比较,然后只与修剪过的Dense层进行比较。
接下来,在30个训练轮次之后,一旦模型停止改进,我们就使用回调来停止训练它。
early_stop = keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=30)
我们打印出模型概述,以便与运用剪枝技术的模型概述进行比较。
model = setup_model() model.summary()
让我们编译模型并训练它。
tf.keras.utils.plot_model( model, to_file=”model.png”, show_shapes=True, show_layer_names=True, rankdir=”TB”, expand_nested=True, dpi=96, )
现在检查一下均方误差。我们可以继续到下一节,看看当我们修剪整个模型时,这个误差是如何变化的。
from sklearn.metrics import mean_squared_error predictions = model.predict(X_test) print(‘Without Pruning MSE %.4f’ % mean_squared_error(y_test,predictions.reshape(3300,))) Without Pruning MSE 0.0201
当把模型部署到资源受限的边缘设备(如手机)时,剪枝等优化模型技术尤其重要。
我们将上面的MSE与修剪整个模型得到的MSE进行比较。第一步是定义剪枝参数。权重剪枝是基于数量级的。这意味着在训练过程中一些权重被转换为零。模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。
预期的参数是剪枝计划、块大小和块池类型。
from tensorflow_model_optimization.sparsity.keras import ConstantSparsity pruning_params = { 'pruning_schedule': ConstantSparsity(0.5, 0), 'block_size': (1, 1), 'block_pooling_type': 'AVG' }
现在,我们可以应用我们的剪枝参数来修剪整个模型。
from tensorflow_model_optimization.sparsity.keras import prune_low_magnitude model_to_prune = prune_low_magnitude( keras.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)), tf.keras.layers.Dense(1, activation='relu') ]), **pruning_params)
我们检查模型概述。将其与未剪枝模型的模型进行比较。从下图中我们可以看到整个模型已经被剪枝 —— 我们将很快看到剪枝一个稠密层后模型概述的区别。
model_to_prune.summary()
在TF中,我们必须先编译模型,然后才能将其用于训练集和测试集。
model_to_prune.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’])
由于我们正在使用剪枝技术,所以除了早期停止回调函数之外,我们还必须定义两个剪枝回调函数。我们定义一个记录模型的文件夹,然后创建一个带有回调函数的列表。
tfmot.sparsity.keras.UpdatePruningStep()
使用优化器步骤更新剪枝包装器。如果未能指定剪枝包装器,将会导致错误。
tfmot.sparsity.keras.PruningSummaries()
将剪枝概述添加到Tensorboard。
log_dir = ‘.models’ callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # Log sparsity and other metrics in Tensorboard. tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir), keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=10) ]
有了这些,我们现在就可以将模型与训练集相匹配了。
model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0)
在检查这个模型的均方误差时,我们注意到它比未剪枝模型的均方误差略高。
prune_predictions = model_to_prune.predict(X_test) print(‘Whole Model Pruned MSE %.4f’ % mean_squared_error(y_test,prune_predictions.reshape(3300,))) Whole Model Pruned MSE 0.1830
现在让我们实现相同的模型,但这一次,我们将只剪枝稠密层。请注意在剪枝计划中使用多项式衰退函数。
from tensorflow_model_optimization.sparsity.keras import PolynomialDecay layer_pruning_params = { 'pruning_schedule': PolynomialDecay(initial_sparsity=0.2, final_sparsity=0.8, begin_step=1000, end_step=2000), 'block_size': (2, 3), 'block_pooling_type': 'MAX' } model_layer_prunning = keras.Sequential([ prune_low_magnitude(tf.keras.layers.Dense(128, activation='relu',input_shape=(X_train.shape[1],)), **layer_pruning_params), tf.keras.layers.Dense(1, activation='relu') ])
从概述中我们可以看到只有第一个稠密层将被剪枝。
model_layer_prunning.summary()
然后我们编译并拟合模型。
model_layer_prunning.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’]) model_layer_prunning.fit(X_train,y_train,epochs=300,validation_split=0.1,callbacks=callbacks,verbose=0)
现在,让我们检查均方误差。
layer_prune_predictions = model_layer_prunning.predict(X_test) print(‘Layer Prunned MSE %.4f’ % mean_squared_error(y_test,layer_prune_predictions.reshape(3300,))) Layer Prunned MSE 0.1388
由于我们使用了不同的剪枝参数,所以我们无法将这里获得的MSE与之前的MSE进行比较。如果您想比较它们,那么请确保剪枝参数是相同的。在测试时,对于这个特定情况,layer_pruning_params给出的错误比pruning_params要低。比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。
现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。
def train_save_weights(): model = setup_model() model.compile(optimizer='adam', loss=tf.keras.losses.mean_squared_error, metrics=['mae', 'mse']) model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=callbacks,verbose=0) model.save_weights('.models/friedman_model_weights.h5') train_save_weights()
我们将建立我们的基础模型,并加载保存的权重。然后我们对整个模型进行剪枝。我们编译、拟合模型,并在Tensorboard上将结果可视化。
base_model = setup_model() base_model.load_weights('.models/friedman_model_weights.h5') # optional but recommended for model accuracy model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model) model_for_pruning.compile( loss=tf.keras.losses.mean_squared_error, optimizer='adam', metrics=['mae', 'mse'] ) model_for_pruning.fit( X_train, y_train, callbacks=callbacks, epochs=300, validation_split = 0.2, verbose=0 ) %tensorboard --logdir={log_dir}
以下是TensorBoard的剪枝概述的快照。
在TensorBoard上也可以看到其它剪枝模型概述
现在让我们定义一个计算模型大小函数
def get_gzipped_model_size(model,mode_name,zip_name): # Returns size of gzipped model, in bytes. model.save(mode_name, include_optimizer=False) with zipfile.ZipFile(zip_name, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(mode_name) return os.path.getsize(zip_name)
现在我们定义导出模型,然后计算大小。
对于剪枝过的模型,tfmot.sparsity.keras.strip_pruning()用来恢复带有稀疏权重的原始模型。请注意剥离模型和未剥离模型在尺寸上的差异。
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning,'.models/model_for_pruning.h5','.models/model_for_pruning.zip'))) print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export,'.models/model_for_export.h5','.models/model_for_export.zip')))
Size of gzipped pruned model without stripping: 6101.00 bytes Size of gzipped pruned model with stripping: 5140.00 bytes
对这两个模型进行预测,我们发现它们具有相同的均方误差。
model_for_prunning_predictions = model_for_pruning.predict(X_test) print('Model for Prunning Error %.4f' % mean_squared_error(y_test,model_for_prunning_predictions.reshape(3300,))) model_for_export_predictions = model_for_export.predict(X_test) print('Model for Export Error %.4f' % mean_squared_error(y_test,model_for_export_predictions.reshape(3300,)))
Model for Prunning Error 0.0264 Model for Export Error 0.0264
您可以继续测试不同的剪枝计划如何影响模型的大小。显然这里的观察结果不具有普遍性。也可以尝试不同的剪枝参数,并了解它们如何影响您的模型大小、预测误差/精度,这将取决于您要解决的问题。
为了进一步优化模型,您可以将其量化。如果您想了解更多,请查看下面的回购和参考资料。
作者:Derrick Mwiti
deephub翻译组:钱三一
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27