
上一篇文章给大家分享了一些关于维度表和事实表的内容,今天给大家带来的是关于维度表技术的一些内容,希望对大家有所帮助。
一、维度表结构
1.每个维度表都包含单一的主键列。
3.维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。
二、常见维度表技术
1.维度代理键
DW/BI需要申明对所有的维度的主键的空置,无法采用自然键或者附加日期的自然键。最好是建立无语意的整型主键。
2.自然键、持久键、超自然键
自然键,例如员工编号
持久键,有时也被叫做超自然持久键。数据仓库为员工编号创建一个单一键,这个单一键保持永久性不会发生变化。
最后的持久键应该独立于原始的业务过程。
3.下钻
商业分析的基本方法:
上卷(roll-up):上卷是沿着维的层次向上聚集汇总数据。 例如,对产品销售数据,沿着时间维上卷,可以求出所有产品在所有地区每月 (或季度或年或全部)的销售额。
下探(drill-down):下探是上卷的逆操作,它是沿着维的层次向下,查看更详细的数据。
3.空值属性
推荐采用标识性标识空值,例如unknown。因为不同数据库对空值处理不同。
4.日历日期维度
用YYYYMMdd更容易划分。
5.维度子集
一些需求是不需要最细节的数据的,那么此时事实数据需要关联特定的维度,这些特定维度包含在从细节维度选择的行中,因此就叫做维度子集。
细节维度和维度子集具有相同的属性或内容,具有一致性。
(1)建立包含属性子集的子维度
例如需要上钻到子维度。
(2)建立包含行子集的子维度
在两个维度处于同一细节粒度的情况下,如果其中一个仅仅是行的子集,那么就会产生另外一种一致性维度构造子集。
在某些版本的Hive中,对ORC表使用overwrite会出错,为了保持兼用性,通常会使用truncate 。
(3)使用视图实现维度子集
这种方式存在着两个主要问题:一是新创建的子维度是物理表,因此需要额外的存储空间;二是存在数据不一致的潜在风险。
通常的解决方法是在基本维度上建立视图生成子维度。
优点:
a.可以简单实现,不需要修改原来脚本的逻辑;
b.因为视图不真正存储数据,因此不会占用存储空间;
c.将数据不一致的可能消除掉。
缺点:
a.如果基本维度和子维度表数据量相差悬殊的话,性能比物理表差很多;
b.如果定义视图查询,并且视图很多,可能对元数据存储系统造成压力,严重影响查询性能。
6.层次维度
通常我们使用grouping__id 二进制序列,rollup,collect_set,concat_ws等函数。
层次关系方法:固定深度层次进行分组和钻取查询,递归层次结构数据装载、展开与平面化,多路径层次和参差不齐处理
7.退化维度
除了业务主键外没有其他内容的维度表。
8.杂项维度
包含数据具有很少可能值的维度。有时与其为每个标志或属性定义不同的维度,不如建立单独的讲不同维度合并到一起的杂项维度。
9.维度合并
如果几个相关维度的基数都很小,或者具有多个公共属性时,可以考虑合并。
10.分段维度
包含连续的分段度量值,通常用作客户维度的行为标记时间序列,分析客户行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10