
提到漏斗模型,大家肯定都不陌生,像漏斗一样的模型嘛。我们在商业分析过程中,肯定会遇到各种个样的模型,其中AARRR漏斗模型就是最常见的模型之一。接下来,就跟小编一起来了解一下AARRR漏斗模型的具体内容吧。
AARRR是增长黑客的经典模型,也可以称为用户增长模型,或者海盗法则,本质上是一个流量漏斗模型。AARRR即Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播),分别对应的是产品用户生命周期中的5个重要环节,每个环节的转化都会带来用户流失,但相应的用户价值也会提高。AARRR模型的提出者认为;所有创新型、成长型的企业都应该按照这个模型来做增长。
下面具体来解释以下AARRR5个重要环节:
1.Acquisition获取用户
获取用户一般需要评估的维度有:渠道的获客数量、获客质量等。渠道数量和质量的指标包括:每日新增、累积新增、启动次数、首次交易户、首绑交易户、一次性用户数、平均使用时长等。具体的获取用户的方式,线上方面主要是:网站SEO,SEM,app市场首发、ASO等方式,另外还包括运营活动的H5页面,以及自媒体推广等方式。线下方面主要通过地推形式以及传单形式进行获取。
2.Activation提高活跃度
获取用户之后,利用价格优惠、内容编辑等方法来提高用户的活跃度,让用户使用产品的核心功能,体验到产品的价值。内容多,商品好,价格优惠,但也必须要注意成本。
通过活跃度指标数据,我们可以更清晰的了解到用户的体验,有利于提高用户粘性。
3.Retention提高留存率
留存率指标一般包括:次日、3日、7日、30日留存。通常来说,次日留存>3日留存>7日留存>次月留存。用户的留存量刚开始会下降的比较严重,到了后期会逐渐稳定在一个数量级上。稳定下来的这些用户,基本上就是产品的目标用户了。通过日留存率、周留存率、月留存率等指标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。运营上,采用内容,相互留言等社区用户共建UCG,摆脱初期的PCG模式。电商通过商品质量,O2O通过优质服务提高留存。这些都是业务层面的提高留存。产品模式上,通过会员机制的签到和奖励的机制去提高留存。包括app推送和短信激活方式都是激活用户,提高留存的产品方式。
4.Revenue获取收入
获取收入是应用运营最核心的一块。收入来源主要包括三种:付费应用、应用内付费、以及广告。在国内目前付费应用的接受程度很低,包括Google Play Store在中国也只推免费应用。开发者的收入来源主要是广告,而应用内付费目前在游戏行业应用比较多。
无论是哪种付费方式,收入都直接或间接来自用户。这也就意味着,我们前面的提高活跃度、提高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。
5.Refer自传播
以之前的运营模型来说,通常到第四个层次:获取收入就结束了。但是随着社交网络的兴起,运营又增加了一个层次,这就是基于社交网络的病毒式传播,目前已经成为获取用户的一个新途径。而且这种方式的成本很低,效果好,但前提是产品自身要有足够好的质量和口碑。
从自传播到再次获取新用户,应用运营形成了一个螺旋式上升的轨道。一般优秀的应用会很好地地利用了这个轨道,以此不断扩大自己的用户群体。
以上就是小编今天跟大家分享的关于AARRR漏斗模型的一些基本理论,大家需要结合自己业务中的实际去灵活运用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10