
之前的文章,小编跟大家分享过一些客户细分以及用户画像等问题。其实这些都是大数据时代的一些精准营销策略和手段,那么今天就让我们一起来看什么是精准营销吧。
一、什么是精准营销
1.精准营销定义
精准营销是指企业通过定量和定性相结合的方法,对目标市场的不同消费者进行细致分析,并根据他们不同的消费心理和行为特征,采用有针对性的现代技术、方法和指向明确的策略,从而实现对目标市场不同消费者群体强有效性、高投资回报的营销沟通。
2.对于精准营销的理解
打开某一购物、视频或者资讯APP,我们就会发现这些APP会给我们推送很多内容,并且这些内容大部分都是我们感兴趣的。其实这就是精准营销,企业会根据我们浏览记录、消费行为等一些信息,有针对性地给我们推荐可能感兴趣的内容,从而提高转化的可能。
在大数据时代之前,企业营销通常只能通过一些传统的营销数据,例如:客户关系管理系统中的客户信息、广告效果、展览等一些线下活动的效果等等。营销数据的来源只限于用户某一方面的有限信息,并没有充分的提示和线索。
现阶段,处于大数据时代的企业,通常都会借助大数据技术把新类型的数据与传统数据结合起来,这样就能更全面地了解用户的信息,对用户群体进行细分,然后再对每个用户群体采取专门的,有针对性的,符合具体需求的营销行动,这就是精准营销。
3.精准营销特点
(1)精准营销最显著的特点是“精准”,也就是在市场细分的基础上,对用户进行细致分析,确定目标对象。
(2)精准营销可以提供高效、投资高回报的个性化沟通。精准营销是在确定目标对象之后,对用户生命周期的各阶段进行划分,从而来抓住用户的心理,进行更为细致、更为有效的沟通。
(3)精准营销能够为用户提供更好,更全面的个性化服务,对客户进行细致分析,并量身定做出符合用户需求的产品和服务,避免了用户从大量产品和服务中的挑选,帮助用户节约时间和精力,同时也满用户个性化的需求,增加了顾客让渡价值。
(4)精准营销借助的是数据库技术、网络通讯技术及现代高度分散物流等手段,保障了与客户的长期个性化沟通,使结果可度量、可调控,成本更低。
二、大数据精准营销流程
1.用户信息收集与整理
用户信息收集与处理是一个数据准备的过程,是数据分析和挖掘的基础,同时更是搞好精准营销的关键,需要收集和整理的信息主要包括:描述信息、行为信息和关联信息等 这3 大类。首先必须把分散的数据聚集到一个数据库中,在进行分类后,可以以用户ID为主键进行整理、转换之后,汇集到一个集中的数据库中,这就能拥有相对准确的用户数据,之后我们可以根据这些数据对用户进行全面的研究和分析。
用户细分是根据用户的特征相似程度,将用户分成若干个群体,在群体内部,这些用户的特征都非常相似,而在群体之间,用户特征差别是非常大的。区分出不同的用户群,才能针对不同用户群,展开差异管理并采取定制化服务的营销手段。
企业可以利用大数据技术在众多用户群中筛选出重点客户,利用某种规则关联,确定出企业的目标客户,从而将其有限的资源投入到这些重点用户只能够,以最小的投入获取最大的收益。
3.制定营销战略
在进行用户细分之后,我们需要结合企业战略、能力、以及市场整体环境等因素,针对每个用户群体的不同特征,为每个群体制定个性化的营销战略。每个营销战略都有着特定的目的,例如获取相似的用户、提升销售,或者防止用户流失等。
4.设计精准营销方案
一个出色的营销方案能够聚焦到某个目标用户群,甚至可以根据每一位用户不同的兴趣特征为他们个性化的市场营销组合方案,例如有针对性的产品组合方案、产品价格方案、一对一的沟通促销方案等。
5.反馈营销结果
在营销活动结束之后,我们需要对营销活动执行过程中,所收集到的各种数据进行综合分析,从中挖掘出最有效的企业市场绩效度量,并与企业传统的市场绩效度量方法进行比较,并确立基于新型数据的度量的优越性和价值,从而评估此次营销活动的执行、渠道、产品和广告的有效性,为下一阶段的营销活动打下良好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28