
线性回归就是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。我们在机器学习过程中也经常会遇到构建线性回归模型的场景,对于初学者来说还是比较困难的。今天小编就给大家分享一篇关于python实战线性回归模型的文章,希望对于大家python的学习和使用,以及线性回归模型的构建有所帮助。
文章来源: 早起Python
作者:萝卜
「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会「将原理知识穿插于代码段中」,争取以不一样的视角来叙述和讲解「如何更好的构建和优化多元线性回归模型」。主要将分为两个部分:
Python 多元线性回归的模型的实战案例有非常多,这里虽然选用的经典的房价预测,但贵在的流程简洁完整,其中用到的精度优化方法效果拔群,能提供比较好的参考价值。
本文的数据集是经过清洗的美国某地区的房价数据集
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('house_prices.csv') df.info();df.head()
参数说明:
现在我们直接构建多元线性回归模型
from statsmodels.formula.api import ols # 小写的 ols 函数才会自带截距项,OLS 则不会 # 固定格式:因变量 ~ 自变量(+ 号连接) lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit() lm.summary()
红框为我们关注的结果值,其中截距项Intercept的 P 值没有意义,可以不用管它
从上图可以看到,模型的精度较低,因为还有类别变量neighborhood和style没有完全利用。这里我们先查看一下类别变量的类别分布情况:
# 类别变量,又称为名义变量,nominal variables nominal_vars = ['neighborhood', 'style'] for each in nominal_vars: print(each, ':') print(df[each].agg(['value_counts']).T) # Pandas 骚操作 # 直接 .value_counts().T 无法实现下面的效果 ## 必须得 agg,而且里面的中括号 [] 也不能少 print('='*35)
因为类别变量无法直接放入模型,这里需要转换一下,而多元线性回归模型中类别变量的转换最常用的方法之一便是将其转化成虚拟变量。原理其实非常简单,将无法直接用于建模的名义变量转换成可放入模型的虚拟变量的核心就短短八个字:「四散拆开,非此即彼」。下面用一个只有 4 行的微型数据集辅以说明。
从上表中,不难发现:
接下来要做的就是将生成的虚拟变量们放入多元线性回归模型,但要注意的是:「转化后的虚拟变量们需要舍弃一个」,才能得到满秩矩阵。具体原因和有关线性代数的解释可以查看笔者打包好的论文,我们可以理解为,当该名义变量可划分为 n 类时,只需要 n-1 个虚拟变量就已足够获知所有信息了。该丢弃哪个,可根据实际情况来决定。
因此为原数据集的某名义变量添加虚拟变量的步骤为:
注意虚拟变量设置成功后,需要与原来的数据集拼接,这样才能将其一起放进模型。
再次建模后,发现模型精度大大提升,但潜在的多元共线性问题也随之显现出来
在解释模型中虚拟变量的系数之前,我们先消除模型中多元共线性的影响,因为在排除共线性后,模型中的各个自变量的系数又会改变,最终的多元线性回归模型的等式又会不一样。多重线性回归模型的主要假设之一是我们的预测变量(自变量)彼此不相关。我们希望预测变量(自变量)与反应变量(因变量)相关,而不是彼此之间具有相关性。方差膨胀因子(Variance Inflation Factor,以下简称VIF),是「指解释变量之间存在多重共线性时的方差与不存在多重共线性时的方差之比」
上图公式可以看出在方差膨胀因子的检测中:
越大,显示共线性越严重。经验判断方法表明:「当 ,不存在多重共线性;当 ,存在较强的多重共线性;当 ,存在严重多重共线性」。
我们自己来写一个方差膨胀因子的检测函数
def vif(df, col_i): """ df: 整份数据 col_i:被检测的列名 """ cols = list(df.columns) cols.remove(col_i) cols_noti = cols formula = col_i + '~' + '+'.join(cols_noti) r2 = ols(formula, df).fit().rsquared return 1. / (1. - r2)
现在进行检测
test_data = results[['area', 'bedrooms', 'bathrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
发现bedrooms和bathrooms存在强相关性,可能这两个变量是解释同一个问题,方差膨胀因子较大的自变量通常是成对出现的。
果然,bedrooms和bathrooms这两个变量的方差膨胀因子较高,这里删除自变量bedrooms再次进行建模
lm = ols(formula='price ~ area + bathrooms + A + B', data=results).fit() lm.summary()
模型精度稍降,但消除了多元共线性后能够使模型的泛化能力提升。再次进行多元共线性检测
test_data = results[['area', 'bedrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
那么多元共线性就「只有通过方差膨胀因子才能看的出来吗?」 其实并不一定,通过结合散点图或相关稀疏矩阵和模型中自变量的系数也能看出端倪。下图是未处理多元共线性时的自变量系数。
可以很明显的看出,bathrooms的参数很可能是有问题的,怎么可能bathrooms的数据量每增加一个,房屋总价还减少 1.373*10 的四次方美元呢?简单的画个散点图和热力图也应该知道房屋总价与bathrooms 个数应该是成正比例关系的。
多元线性回归模型的可解释性比较强,将模型参数打印出来即可求出因变量与自变量的关系
所以最终的建模结果如下,且该模型的精度为0.916
另外在等式结果中,截距项Intercept和area,bedrooms等变量的系数都还好理解;A,B 这两个虚拟变量可能相对困难些。其实根据原理部分的表格来看,如果房屋在 C 区,那等式中 A 和 B 这两个字母的值便是 0,所以这便引出了非常重要的一点:使用了虚拟变量的多元线性回归模型结果中,存在于模型内的虚拟变量都是跟被删除掉的那个虚拟变量进行比较。所以这个结果便表示在其他情况完全一样时(即除虚拟变量外的项)A 区的房屋比 C 区低 8707.18 美元,B 区则比 C 区贵 449896.73.7 美元。当然我们也可以画个箱线图来查看与检验,发现结果正如模型中 A 与 B 的系数那般显示。
本文以多元线性回归为基础和前提,在因变量房价与多个自变量的实际观测值建立了多元线性回归模型;分析并检验各个预测变量对因变量的综合线性影响的显著性,并尽可能的消除多重共线性的影响,筛选出因变量有显著线性影响的自变量,对基准模型进行优化,并对各自变量相对重要性进行评定,进而提升了回归模型的预测精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15