小编以前简单跟大家分享过方差分析。先来回顾一下概念:方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用于两个及两个以上样本均数差别的显著性检验。但是对于方差分析更深层次的理解,很多刚接触的小白了解的还不是很多,所以小编今天就跟大家分享一篇文章:从协方差分析看回归与方差分析的联系,希望对大家有所帮助。
以下文章来源: 丁点帮你微信公众号
作者:丁点helper
无论是单因素还是双因素方差分析,我们可以发现,它们都有一些共性,比如研究的因变量(如前文的硒含量、满意度得分),都是定量变量;而自变量,即分组变量(如地区、教育程度、性别)都是定性变量。
现在我们将前文“满意度得分的例子”继续延伸:除了我们关注的“教育程度”和“性别”外,还有其他变量会影响人们对生活的满意度得分吗?
当然有,比如收入水平!
很显然,一个人的工资多少完全可能直接决定他目前对生活的满意度。因此,倘若我们忽视了调查对象的收入情况,仅研究教育程度和性别的影响,这样就可能造成结果产生偏移,也就是说可能本来没意义的结果变成了有意义,从而得出误导性的判断。
因此,在这种情况下,“收入”这个变量就被称为“协变量”,可以记为“Z”。纳入协变量的方差分析,即称协方差分析。
一般而言,进行协方差分析的协变量为“定量变量”,比如本例中的“人均月收入”,它一般不是研究者重点研究的变量(本例中重点研究的是教育程度和性别),但因为它会对分析结果造成干扰,因此在分析过程中必须要将其纳入。
所以,协方差分析仍然是建立在方差分析这个基本框架之上的,其思想与单因素以及双因素方差分析区别也不大,并且在进行分析前数据需要满足的条件也都需要。
此外,因为加入了一个新的变量——协变量,所以也有些额外了条件需要满足。我们今天对这些条件做些概述。
1)变量的类型:一般而言,进行协方差分析,因变量是定量的连续变量(如本例的“满意度得分”);自变量是分类变量(可以加入多个自变量,如本例中的“教育程度”和“性别”);协变量是连续变量(如本例的“收入”)。
2)线性关系:原则上需要协变量与因变量存在线性关系。
3)平行性假设:分组变量的不同水平下,协变量与因变量的回归直线互相平行。
线性假设和平行性假设初次看起来可能比较难理解,但实际上就是为了排除所谓的交互作用。什么是交互作用呢?
比如我们想研究“教育程度”与“满意度得分”的关系,协变量是收入。在不考虑协变量时,发现随着教育程度的升高,人们的满意度得分也逐渐升高,比如教育上升一个等级(从“高中毕业”到“大学本科”,或者从“大学本科”升至“研究生及以上”),满意度得分都会增加5分。
现在加入“收入”这个协变量之后,发现随着教育程度升高,满意度得分也升高,但是不同的学历程度,其升高的幅度不一样。
比如,加入协变量之后,从“高中毕业”升至“大学本科”,满意度得分仍增加5分;但如果从“大学本科”升至“研究生及以上”,满意度得分仅仅增加3分。这个时候,我们就说收入与教育程度产生了交互作用。
产生了交互作用,也就意味着收入对生活满意度的影响会随着教育程度的变化而变化(注意这里的措辞,收入影响的是满意度和教育程度的相关关系,而不仅仅是其中某一个变量,这是理解交互作用的核心)
这句话也可以反过来说。教育程度对生活满意度的影响会随着人们收入不同而不同,用线性回归的术语来表示就是:不同的教育程度下,收入与满意度得分的回归直线斜率(β)不同,因此,它们就不会平行(两直线平行需要斜率相同)。
所以,想满足平行线假设,就需要协变量与自变量之间不存在交互作用,这个可以通过专门的检验方法来判断。
看到这里,你可能会疑惑,明明在讲方差分析,怎么扯到回归的内容了?
是的,方差分析和回归分析实际上可以看做是一回事儿,只是两者侧重点略有不同,前者主要是比较差异,后者主要是算影响的效应值(即回归系数β,这一点我们后面详述)。
一方面对于多因素或协方差分析的SPSS操作,我们称作“一般线性模型”;另外在进行回归分析之后软件也都会首先弹出一个方差分析的大表,检验整个回归模型是否有意义。
只不过我们在进行回归分析时,并没有严格区分自变量和协变量,而是将它们一股脑地全部纳入回归模型,然后筛选出最终有意义的变量。
因此,我们现在讲的方差分析,其实就是后续回归分析的一些特例,从回归的角度理解方差分析,相信你会看的更加明了!
回到我们今天的主题,除了上述三个条件,在进行协方差分析时也需要注意其他条件,比如常说的正态、独立、方差齐等,处理的方法也和普通的方差分析基本相同,暂不赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27