京公网安备 11010802034615号
经营许可证编号:京B2-20210330
散点图大家都能绘制,平常工作汇报有时也会用散点图让报表看起来更美观。但是,散点图并不是为了展示数据,而是需要数据分析,并利用数据分析的结果推动业务的增长。小编今天跟大家分享的这篇文章就是教大家如何用散点图进行数据分析的,希望对大家有所帮助。
文章来源:林骥微信公众号
作者:林骥
你好,我是林骥。
散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。
散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。
比如说,假设表格中有 10000 个客户年龄和消费金额的数据:
我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图:
从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来, 接近于 1 ,代表算法拟合的效果很好。
接下来,我们看看具体实现的步骤。
首先,导入所需的库,并设置中文字体和定义颜色等。
# 导入所需的库 import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline # 正常显示中文标签 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 自动适应布局 mpl.rcParams.update({'figure.autolayout': True}) # 正常显示负号 mpl.rcParams['axes.unicode_minus'] = False # 禁用科学计数法 pd.set_option('display.float_format', lambda x: '%.2f' % x) # 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色 c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF', '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC', '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}
其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。
# 数据源路径
filepath='./data/客户年龄和消费金额.xlsx'
# 读取 Excel文件
df = pd.read_excel(filepath, index_col='客户编号')
# 定义画图用的数据:年龄和人均消费金额
df_group = df.groupby('年龄').mean()
x = np.array(df_group.index).reshape(-1, 1)
y = np.array(df_group.values)
# 用管道的方式调用算法,以便把线性回归扩展为多项式回归
poly_reg = Pipeline([
('ploy', PolynomialFeatures(degree=1)),
('lin_reg', LinearRegression())
])
# 拟合
poly_reg.fit(x, y)
# 斜率
coef = poly_reg.steps[1][1].coef_
# 截距
intercept = poly_reg.steps[1][1].intercept_
# 评分
score = poly_reg.score(x, y)
接下来,开始用「面向对象」的方法进行画图。
# 使用「面向对象」的方法画图,定义图片的大小
fig, ax = plt.subplots(figsize=(8, 6))
# 设置标题
ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色'])
# 画气泡图
ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1)
# # 绘制预测线
y2 = poly_reg.predict(x)
ax.plot(x, y2, '-', c=c['橙色'], zorder=2)
# 隐藏边框
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# 隐藏刻度线
ax.tick_params(axis='x', which='major', length=0)
ax.tick_params(axis='y', which='major', length=0)
ax.set_ylim(15, 65)
ax.set_ylim(1000, 5000)
# 设置坐标标签字体大小和颜色
ax.tick_params(labelsize=16, colors=c['深灰色'])
ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色'])
# 设置坐标轴的标题
ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色'])
# 预测 55 岁的人均消费金额
predict = poly_reg.predict([[55]])
# 标注公式
formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score
ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色']))
plt.show()
你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。
当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。
为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?
好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。
好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。
好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。
我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。
很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。
熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。
如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:
(1)描述:检查身体,描述指标值是否正常。
(2)诊断:询问病情,找到疾病的产生原因。
(3)预测:分析病情,预测病情的发展趋势。
(4)指导:开出药方,提出有效的治疗建议。
我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12