作者:Mika
数据:真达
后期:泽龙
【导读】
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。我们今天就来聊一聊自热食品。
python技术部分请直接看第三部分。
Show me data,用数据说话
今天我们聊一聊 自热食品
疫情期间,在宅在家里的日子,主打一人食概念的自热食品备受关注。自热火锅、自热米饭、即食酸辣粉、即食螺蛳粉等方便食品的销量迎来大幅度增长。光是今年春节,自热火锅的销售暴涨就惊起讨论无数。
自热火锅,自热米饭们就这么成为了新的网红食品,持续霸占着电商销售量榜首,你吃过自热火锅吗?哪款自热食品卖得最好?今天我们就带你用数据来解读这些自热食品。
01“万物皆可自热”
自热食品就这么火了
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。一时间,各种自热食品品牌如雨后春笋涌出。自热食品的市场规模也逐年扩大,预计今年将达到40亿元。
来源:《自热食品网络关注度分析报告》—微热点大数据研究院
超市里曾经被泡面牢牢占据的方便食品货架,迅速被自热火锅、自热米饭、自热面抢走半壁江山。
目前自热食品的入局企业不仅有传统的火锅巨头,如海底捞、小龙坎;还有像三只松鼠、良品铺子等零食厂商;同时还有像自嗨锅莫小仙等主打速食品类的新兴品牌。
根据莫小仙的数据,在疫情期间的整体销量同比增长近400%。而自嗨锅3月份公布的数据显示,其线上订单量在疫情期间增长了200%-300%。
其实像外卖、速冻、泡面和眼下潮头上的各种自热锅,本质都是“懒人经济”。同样是方便食品,泡个面还得烧水,速冻食品还得开火加热,而自热锅多方便,比起方便面自热锅在选择上好歹有肉有菜有饭有面,选择上略胜一筹。
02全网哪款自热火锅卖得最好?
我们使用Python获取了淘宝网自热食品相关的商品销售数据,共有4403条数据。
自热食品品类月销量
首先我们看看自热食品都有哪些类别。我们可以看到,卖得最好的是各种自热火锅,以超过190多万的月销量一骑绝尘。排在第二位的是自热米饭,销售量超过64万。排在后面的还有自热方便面、自热粉丝、自热烧烤等等。
哪款自热食品卖的最好?
那么都是哪些自热食品卖得最好呢?下面看到产品月销量排名top10。排在前三位的月销量都超过了12万,分别是椒吱自热小火锅、阿宽自热米饭和辣味客重庆自热小火锅。
自热食品店铺销量排行
都是哪些店铺占据着自热食品销量的前列呢?
通过分析我们发现,卖的做多的是天猫超市。那么具体的店铺方面,前三位分别是莫小仙、自嗨锅以及川蜀老味道。辣味客、白家陈记等店紧随其后。
自热食品标题词云
整理自热食物的标题后我们发现:“即时”、“速食”、“自热”、“懒人”等词都常常出现,果然是懒人经济,就是讲究个方便和快速,让你撕开包装,不需过多的操作就能吃上。类别上主要集中在“火锅”、“米饭”、“麻辣烫”、“面类”等。
自热食品店铺地区分布
这些自热食品的店铺都分布在哪些地区呢?从销量靠前的商品我们也可以猜到,这方面四川绝对是霸主,全网的自热食品店铺数量排名中,四川以1140家店铺称霸。
其次广东和上海分别以1007和1002家店位居二三。
自热食品都卖多少钱?
再看到自热食品的价格,可以看到30元以下的超过了半数,占比62.78%。这也是大众普遍能接受的价格,价格再高的话还不如点份外卖了。
03教你用Python分析
全网自热食品数据
我们使用Python获取了淘宝网自热食品相关的商品销售数据,进行了以下数据分析。
1数据读入
首先导入所需包:
# 导入包 import numpy as np import pandas as pd import time import jieba import os from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts import stylecloud from IPython.display import Image
使用循环读入数据集,查看一下数据集大小,可以看到一共有4403条数据。
file_list = os.listdir('../data/') df_all = pd.DataFrame() # 循环读入 for file in file_list: df_one = pd.read_excel(f'../data/{file}') df_all = df_all.append(df_one, ignore_index=True) print(df_all.shape)
(13984, 6)
预览一下数据。
df_all.head()
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共8418条。
# 去除重复值 df_all.drop_duplicates(inplace=True) # 删除购买人数为空的记录 df_all = df_all[df_all['purchase_num'].str.contains('人付款')] # 重置索引 df_all = df_all.reset_index(drop=True) df_all.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 8418 entries, 0 to 8417 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 category 8418 non-null object 1 goods_name 8418 non-null object 2 shop_name 8418 non-null object 3 price 8418 non-null float64 4 purchase_num 8418 non-null object 5 location 8418 non-null object dtypes: float64(1), object(5) memory usage: 394.7+ KB
# 提取数值 df_all['num'] = df_all['purchase_num'].str.extract('(\d+)').astype('int') # 提取单位 df_all['unit'] = df_all.purchase_num.str.extract(r'(万)') df_all['unit'] = df_all.unit.replace('万', 10000).replace(np.nan, 1) # 重新计算销量 df_all['true_purchase'] = df_all['num'] * df_all['unit'] # 删除列 df_all = df_all.drop(['purchase_num', 'num', 'unit'], axis=1) # 计算销售额 df_all['sales_volume'] = df_all['price'] * df_all['true_purchase'] # location df_all['province'] = df_all['location'].str.split(' ').str[0] df_all.head()
此部分部分主要对以下的维度数据进行汇总和可视化分析,以下展示关键部分:
cat_num = df_all.groupby('category')['true_purchase'].sum() cat_num = cat_num.sort_values(ascending=False) # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(cat_num.index.tolist()) bar1.add_yaxis('', cat_num.values.tolist()) bar1.set_global_opts(title_opts=opts.TitleOpts(title='自热食品细分品类月销量表现'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=0)), visualmap_opts=opts.VisualMapOpts(max_=1960179.0) ) bar1.render()
shop_top10 = df_all.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10) shop_top10.sort_values(inplace=True) # 条形图 bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar2.add_xaxis(shop_top10.index.tolist()) bar2.add_yaxis('', shop_top10.values.tolist()) bar2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品各店铺月销量排行Top10'), ) bar2.set_series_opts(label_opts=opts.LabelOpts(position='right')) bar2.set_colors(['#50A3BA']) bar2.reversal_axis() bar2.render()
province_top10 = df_all.province.value_counts()[:10] # 条形图 bar3 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar3.add_xaxis(province_top10.index.tolist()) bar3.add_yaxis('', province_top10.values.tolist()) bar3.set_global_opts(title_opts=opts.TitleOpts(title='各省份自热食品店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1140) ) bar3.render()
province_num = df_all.groupby('province')['true_purchase'].sum().sort_values(ascending=False) # 地图 map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px')) map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())], maptype='china' ) map1.set_global_opts(title_opts=opts.TitleOpts(title='全国自热食品店铺月销量分布'), visualmap_opts=opts.VisualMapOpts(max_=500000), ) map1.render()
# 分箱 bins = [0,30,50,100,150,200,500,1000,9999] labels = ['0-30元', '30~50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-8800'] df_all['price_cut'] = pd.cut(df_all.price, bins=bins, labels=labels, include_lowest=True) price_num = df_all['price_cut'].value_counts() # 数据对 data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())] # 绘制饼图 pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie2.add('', data_pair2, radius=['35%', '60%']) pie2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品都卖多少钱?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:\n{d}%")) pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF']) pie2.render()
结语:
最后在说道自热食品,虽然说宅家时,打开包装稍等一会儿就能吃上热腾腾的小火锅或米饭,真的是太方便了。但是同时,关于自热食品安全隐患的消息也频出,在食物的种类和口感上更是比不上自己做的或外面吃的新鲜食材了。对自热食品你是怎么看的呢?欢迎留言告诉我们哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26