
想必大家在学习数据分析的时候,一定接触过ETL,那么关于ETL大家了解到什么程度呢?跟小编一起来复盘一下吧!
一、ETL概念
ETL全称是:Extract-Transform-Load,是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程。其目的是将企业中那些分散、零乱、标准不统一的数据整合到一起,从而为企业的决策提供分析依据。 ETL为BI项目一个非常重要的环节, 往往在BI项目中,ETL会占用我们整个项目至少1/3的时间,可以说ETL设计的好坏会直接关系到BI项目的成败。
二、ETL关键技术
1.数据的抽取(Extract)
首先需要确定数据源,也就是要弄明白数据是从哪几个业务系统中来,每个业务系统的数据库服务器运行什么DBMS;是否有手工数据存在,存在的话,数据量是多少;是否有非结构化的数据存在等。我们需要定义数据接口,对每一个源文件及系统中的每一个字段进行详细说明。之后确定数据抽取的方法,例如:需要确定是主动抽取还是由源系统推送?是按每日抽取还是每月抽取?以及是增量抽取还是全量抽取?
2.数据的清洗转换(Transform)
(1)数据清洗(Cleaning)
数据清洗的主要任务是清洗掉那些不符合要求的数据,将清洗的结果交给业务主管部门,并确认是直接清洗掉,还是由业务单位修正之后再次抽取。
不符合要求的数据主要包括:不完整的数据、错误的数据、重复的数据这三类。
(2)数据转换
数据转换一般包括:
空值处理,也就是捕获字段空值,并将其加载或替换为其他含义数据,或者数据分流问题库
数据拆分,根据实际业务需求对数据进行拆分,例如对身份证号拆分,拆分行政区划、出生日期、性别等
数据验证,时间规则、业务规则、自定义规则
数据替换,替换由于业务因素而导致的那些无效数据、缺失数据
数据关联,与其他数据进行关联,以保障数据完整性
3.数据加载(Load)
将清洗和转换后的数据装载到对应的表库中是ETL过程的最后步骤。采用什么样的方法装载数据,关键取决于所执行操作的类型和需要装载的数据量。当对应库为关系数据库时,通常有两种装载方式:
(1)直接使用SQL语句进行insert、update、delete操作。
(2)采用批量装载方法,例如bcp、bulk、关系数据库特有的批量装载工具或者api。
三、ETL日志、警告发送
1、 ETL日志
ETL日志主要分为三类。
(1)执行过程日志::在ETL执行过程中每一步的记录,记录每一次运行过程中各步骤的起始时间,影响的数据量,以流水账形式记录。
(2)错误日志::某个模块出错时的日志,会记录出错的时间、出错的模块以及其它相关出错的信息等。
(3)总体日志:只是记录ETL开始和结束时间以及否成功等信息。
如果我们使用ETL工具,那些ETL工具会也自动产生日志,这些日志也可以看做ETL日志的一部分。
记录日志的有助于我们随时知道ETL运行情况,一旦出现错误,我们可以知道是哪里出错。
2、 警告发送
若ETL出现错误,不仅会形成ETL错误日志,并且会向系统管理员发送警告。警告发送的方式有很多种,通常会采用向系统管理员发送邮件的形式,并且会附上出错的相关信息,方便管理员排查错误。
ETL是BI项目的关键环节,也是一个长期的过程,需要不断的发现问题,并解决问题,才能让ETL运行效率更高,为BI项目后期开发提供更加准确与高效的分析数据。
四、ETL 模式
ETL主要有四种实现模式,分别为:触发器模式、增量字段、全量同步、日志比对
五、ETL 工具
我们在选择ETL工具时,需要考虑从工具对平台和数据源的支持程度,集成性和开放性、抽取和装载的性能、数据转换和加工的性能,以及侵入性的高低,是否管理和调度功能等方面综合考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10