京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据处理时我们经常会遇到数据倾斜的问题,尤其是在数据量过大时,数据倾斜可能会导致各种各样的问题。Hadoop数据倾斜主要表现为:ruduce阶段卡在99.99%,而且是一直99.99%不能结束。
具体来说就是:mapreduce程序执行时,reduce节点大部分已经执行完毕,但是其中会有一个或者几个reduce节点运行速度很慢,从而使得整个程序的处理时间很长。原因是:某一个key的条数比其他key多出太多,因此这条key所在的reduce节点所处理的数据量就比其他节点就大很多,这也就造成了某几个节点迟迟运行不完。由于Hive是分阶段执行的,map处理数据量的差异,取决于上一个stage的reduce输出,因此将数据均匀的分配到各个reduce中,这一点是解决数据倾斜的关键。
1.Hadoop框架的特性
B、Jobs 数多的作业运行效率会相对比较低
C、countdistinct、group by、join等操作,触发了Shuffle动作,导致全部相同key的值聚集在一个或几个节点上,很容易发生单点问题。
2.具体原因
A:key 分布不均匀,某一个key的条数比其他key多太多
B:业务数据自带的特性
C:建表时考虑不全面
D:可能某些 HQL 语句自身就存在数据倾斜 问题
1、从业务和数据方面解决数据倾斜
(1)有损的方法:找到异常数据。
(2)无损的方法:
对分布不均匀的数据,进行单独计算
首先对key做一层hash,把数据打散,让它的并行度变大,之后进行汇集
(3)数据预处理
2、Hadoop平台的解决方法
(1)针对join产生的数据倾斜
A.大表和小表join产生的数据倾斜
a.在多表关联情况下,将小表(关联键记录少的表)依次放到前面,这样能够触发reduce端减少操作次数,从而减少运行时间。
b.同时使用Map Join让小表缓存到内存。在map端完成join过程,这样就能省掉redcue端的工作。需要注意:这一功能使用时,需要开启map-side join的设置属性:set hive.auto.convert.join=true(默认是false)
还可以对使用这个优化的小表的大小进行设置:set hive.mapjoin.smalltable.filesize=25000000(默认值25M)
B.大表和大表的join产生的数据倾斜
a.j将异常值赋一个随机值,以此来分散key,均匀分配给多个reduce去执行
b.如果key值都是有效值的情况下,需要设置以下几个参数来解决
set hive.exec.reducers.bytes.per.reducer = 1000000000
也就是每个节点的reduce,其 默认是处理数据地大小为1G,如果join 操作也产生了数据倾斜,那么就在hive 中设定
set hive.optimize.skewjoin = true;
set hive.skewjoin.key = skew_key_threshold (default = 100000)
(2)group by 造成的数据倾斜
解决方式相对简单:
hive.map.aggr=true (默认true) 这个配置项代表是否在map端进行聚合,相当于Combiner
hive.groupby.skewindata
(3)count(distinct)或者其他参数不当造成的数据倾斜
A.reduce个数太少
set mapred.reduce.tasks=800
B.HiveQL中包含count(distinct)时
使用sum...group byl来替代。例如select a,sum(1) from (select a, b from t group by a,b) group by a;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12