京公网安备 11010802034615号
经营许可证编号:京B2-20210330
NLP(Natural Language Processing)自然语言处理是数据科学领域的一个非常重要的分支,它包含了,以一种高效的方式去分析,理解并从文本中提取信息等重要过程,终极目标是让计算机拥有自然语言处理交际能力。通过利用NLP及其相关组件,可以将大量的文本数据组织起来,以此来执行大量的自动化任务,并用于各种问题的解决,例如自动摘要,命名实体识别,情感分析,关系提取,语音识别、机器翻译和主题分割等。
NLP自然语言处理和计算机语言学,这两者在本质上是一样的,横跨了计算机科学、语言学、人工智能学科等学科。
一、NLP步骤
1、形态处理:
目的为:分割整个输入的文本,形成各种符号集合。这些符号分别与段落、句子及词汇等一一对应。
例:“uneasy”—>“un-easy”。这里“uneasy”就被分割成两个子词符号“un”和“easy”
2、语法分析:
目的为:a、检查句子,确定句式是否合理;b、把句子分解成一个结构,此结构能够将不同单词之间的句法关系显示出来。
例:“The school goes to the boy”这样的会无法通过句法分析器以及句法解释器。
3、语义分析:
确定输入文本的准确含义,或者找出输入文本在字典中的意思。目的为,检查文本是否有意义。
例:“Hot ice-cream”无法通过语义分析器。
4、语用分析:
语用分析简单地拟合实际的对象/事件,这些对象/事件存在于给定的上下文中,其中对象引用是在最后阶段(语义分析)获得的。
例如:“Put the banana in the basket on the shelf”这句话可以有两种语义解释:a把篮子里的香蕉放到书架上;b把香蕉放到书架上的篮子里。语用分析器能够结合上下文在这两种解释之间做出选择。
二. NLP的基本方法
1.基于规则的方法
研究人员,例如如语言学家,通过语言规律的总结,从而形成规则形态的知识库;
研制语言处理算法,并利用这些规则处理自然语言;
结合处理结构,进行规则调整,优化处理效果。
存在的问题:并不能总结出所有规则
2.基于统计的方法
建立能够反应语言使用状况的语料库;
研究人员对自然语言进行统计建模;
利用统计技术或者机器学习技术,借助语料库来进行语言模型的训练;
根据所得到的模型,设计相应算法对语言进行处理;
根据处理效果,优化模型,提高处理能力。
存在的问题:数据稀疏问题也就是长尾效应
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01