
Keras 是基于 Theano 或 者TensorFlow 的一个深度学习框架,其设计源于Torch,编程语言用 Python ,是一个功能强大、内容抽象,高度模块化的神经网络库,能够支持 GPU 和 CPU。目前tensorflow已经将keras合并到了自己的主代码中,我们可以直接tf.keras就能调用其中的工具库了。
一、 Keras设计原则
a)用户友好:Keras提供一致而简洁的API, 大大降低了一般应用下用户的工作量,并且,Keras可以提供清晰和具有实践意义的bug反馈。
b)模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
c)易扩展性:只要仿照现有模块编写出新的类或者函数,就能够非常简单的添加新模块。这种快捷性、便利性,能够让Keras在先进的研究工作方面有更突出的表现。
d)与Python协作:Keras并没有单独的模型配置文件类型,模型使用python代码,这使得Keras更紧凑和更易debug,扩展更为便捷。
二、keras安装
在进行keras安装之前,需要需要确保TensorFlow,Theano,CNTK已经安装完成。建议使用TensorFlow后端。如果计划在GPU上运行keras,还可以选择依赖项cuDNN。
1、打开dos窗口,在命令行中输入:pip install keras
2、下载完成后,进入python环境,输入import keras,输出Using Tensorflow backend即表示安装成功。
三、快速上手 Keras
模型,是一种组织网络层的方式,它是Keras 的核心数据结构。Keras 中主要的模型有: Sequential 模型,Sequential 是一系列网络层按顺序构成的栈。
Sequential 模型如下:
from keras.models import Sequential model = Sequential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:
from keras.layers import Dense, Activation model.add(Dense(units=64. input_dim=100)) model.add(Activation("relu")) model.add(Dense(units=10)) model.add(Activation("softmax"))
完成模型的搭建后,我们需要使用 .compile() 方法来编译模型:
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
模型编译时必须指明损失函数和优化器。Keras 的核心理念就是简便快捷,操作容易。用户可以根据自己的实际需要定制自己的模型、网络层,甚至修改源代码。比如,我们使用自定义的 SGD 优化器:
from keras.optimizers import SGD model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01. momentum=0.9. nesterov=True))
模型编译完成之后,我们在训练数据上按 batch 进行一定次数的迭代来训练网络:
model.fit(x_train, y_train, epochs=5. batch_size=32)
如果我们采用手动方法,将一个个 batch 的数据送入网络中训练,需要使用:
model.train_on_batch(x_batch, y_batch)
随后,我们可以用这一行代码来评估模型,确定模型的指标是否能够满足我们的要求:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,我们可以使用此模型,预测新数据:
classes = model.predict(x_test, batch_size=128)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28