京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Keras 是基于 Theano 或 者TensorFlow 的一个深度学习框架,其设计源于Torch,编程语言用 Python ,是一个功能强大、内容抽象,高度模块化的神经网络库,能够支持 GPU 和 CPU。目前tensorflow已经将keras合并到了自己的主代码中,我们可以直接tf.keras就能调用其中的工具库了。
一、 Keras设计原则
a)用户友好:Keras提供一致而简洁的API, 大大降低了一般应用下用户的工作量,并且,Keras可以提供清晰和具有实践意义的bug反馈。
b)模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
c)易扩展性:只要仿照现有模块编写出新的类或者函数,就能够非常简单的添加新模块。这种快捷性、便利性,能够让Keras在先进的研究工作方面有更突出的表现。
d)与Python协作:Keras并没有单独的模型配置文件类型,模型使用python代码,这使得Keras更紧凑和更易debug,扩展更为便捷。
二、keras安装
在进行keras安装之前,需要需要确保TensorFlow,Theano,CNTK已经安装完成。建议使用TensorFlow后端。如果计划在GPU上运行keras,还可以选择依赖项cuDNN。
1、打开dos窗口,在命令行中输入:pip install keras
2、下载完成后,进入python环境,输入import keras,输出Using Tensorflow backend即表示安装成功。
三、快速上手 Keras
模型,是一种组织网络层的方式,它是Keras 的核心数据结构。Keras 中主要的模型有: Sequential 模型,Sequential 是一系列网络层按顺序构成的栈。
Sequential 模型如下:
from keras.models import Sequential model = Sequential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:
from keras.layers import Dense, Activation
model.add(Dense(units=64. input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))
完成模型的搭建后,我们需要使用 .compile() 方法来编译模型:
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
模型编译时必须指明损失函数和优化器。Keras 的核心理念就是简便快捷,操作容易。用户可以根据自己的实际需要定制自己的模型、网络层,甚至修改源代码。比如,我们使用自定义的 SGD 优化器:
from keras.optimizers import SGD model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01. momentum=0.9. nesterov=True))
模型编译完成之后,我们在训练数据上按 batch 进行一定次数的迭代来训练网络:
model.fit(x_train, y_train, epochs=5. batch_size=32)
如果我们采用手动方法,将一个个 batch 的数据送入网络中训练,需要使用:
model.train_on_batch(x_batch, y_batch)
随后,我们可以用这一行代码来评估模型,确定模型的指标是否能够满足我们的要求:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,我们可以使用此模型,预测新数据:
classes = model.predict(x_test, batch_size=128)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01