京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于大数据的处理问题,计算机科学界有两大方向:一是集中式计算,另外一种是分布式计算。小编今天给大家整理的是几种主流的分布式计算框架,希望对大家有所帮助。
Hadoop是基础,它的HDFS能够存储文件,Yarn进行资源管理,在Hadoop的基础上运行MapReduce、Spark、Tez等计算框架。
MapReduce:是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段来处理,主要适用于大批量的密集型计算,但是因为是批量执行,因此时效性比较低。
Spark:类似于Hadoop MapReduce,是UC Berkeley AMP lab所开源的通用型并行计算框架,Spark通过map reduce算法,实现分布式计算,保留了 Hadoop MapReduce 所拥有的的优点;但是与MapReduce不同的地方是,时效性很高,Job中间输出和结果都能够保存在内存中,不再需要对HDFS进行读写,从而对有迭代计算需求和高时效性要求的系统提供了更多的支持,经常被应用于能够容忍小延时的推荐与计算系统。
Storm:Storm是一个免费开源、分布式、高容错的实时计算系统。Storm能够很容易的计算持续不断地流量,在实时处理上,很好地弥补了Hadoop批处理的不足。由于Storm一开始就是为实时处理而设计的,而且它理论上支持所有语言,只要少量代码就能完成适配器,经常用于在实时分析、性能监测、持续计算、在线机器学习、分布式远程调用以及ETL等时效性要求较高的领域。
Tez: 是基于Hadoop Yarn之上的DAG计算框架,直接源于MapReduce框架,它把Map Reduce过程拆分为若干个子过程,同时将多个Map Reduce任务合并成一个较大的DAG任务,减少了Map Reduce之间的文件存储,同时对其子过程进行合理组合,这也减少了运行任务的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27