京公网安备 11010802034615号
经营许可证编号:京B2-20210330
正则表达式(Regular Expression),计算机科学的一个概念,又叫做正规表示法或者常规表示法。
正则表达式描述了一种字符串匹配的模式,能够检查一个串中是不是含有某种子串、替换匹配的子串,将符合某个条件的子串从某个串中取出等。因此正则表达式经常在文本编辑器里,被用来检索,并替换掉那些符合某个模式的文本。
一、正则表达式实际应用场景
(1)验证:验证字符串是否符合指定特征,比如表单提交时,对用户名、密码进行验证。
(2)查找:能够快速从大量信息中检索出指定的内容,在一大批url中,找到指定url,比查找普通字符串更加灵活,更加方便
(3)替换:正则匹配查找指定格式的文本,之后进行特定替换,比起普通替换,更高效
二、正则表达式基本要素
(1)字符类
(2)数量限定符
(3)位置限定符
(4)特殊符号
注意:正则表达式基本是与语言无关的,我们可以结合语言/工具与正则表达式进行文本处理
三、正则表达式字符串
| 字符 | 描述 |
|---|---|
| \ | 将下一个字符标记为一个特殊字符、或一个原义字符、或一个 后向引用、或一个八进制转义符。例如,'n' 匹配字符 "n"。'\n' 匹配一个换行符。序列 ‘\\' 匹配 "\" 而 "\(" 则匹配 "("。 |
| ^ | 匹配输入字符串的开始位置。如果设置了 RegExp 对象的 Multiline 属性,^ 也匹配 ‘\n' 或 ‘\r' 之后的位置。 |
| $ | 匹配输入字符串的结束位置。如果设置了RegExp 对象的 Multiline 属性,$ 也匹配 ‘\n' 或 ‘\r' 之前的位置。 |
| * | 匹配前面的子表达式零次或多次。例如,zo* 能匹配 "z" 以及 "zoo"。 * 等价于{0.}。 |
| + | 匹配前面的子表达式一次或多次。例如,'zo+' 能匹配 "zo" 以及 "zoo",但不能匹配 "z"。+ 等价于 {1.}。 |
| ? | 匹配前面的子表达式零次或一次。例如,"do(es)?" 可以匹配 "do" 或 "does" 中的"do" 。? 等价于 {0.1}。 |
| {n} | n 是一个非负整数。匹配确定的 n 次。例如,'o{2}' 不能匹配 "Bob" 中的 ‘o',但是能匹配 "food" 中的两个 o。 |
| {n,} | n 是一个非负整数。至少匹配n 次。例如,'o{2.}' 不能匹配 "Bob" 中的 ‘o',但能匹配 "foooood" 中的所有 o。'o{1.}' 等价于 ‘o+'。'o{0.}' 则等价于 ‘o*'。 |
| {n,m} | m 和 n 均为非负整数,其中n <= m。最少匹配 n 次且最多匹配 m 次。刘, "o{1.3}" 将匹配 "fooooood" 中的前三个 o。'o{0.1}' 等价于 ‘o?'。请注意在逗号和两个数之间不能有空格。 |
| ? | 当该字符紧跟在任何一个其他限制符 (*, +, ?, {n}, {n,}, {n,m}) 后面时,匹配模式是非贪婪的。非贪婪模式尽可能少的匹配所搜索的字符串,而默认的贪婪模式则尽可能多的匹配所搜索的字符串。例如,对于字符串 "oooo",'o+?' 将匹配单个 "o",而 ‘o+' 将匹配所有 ‘o'。 |
| . | 匹配除 "\n" 之外的任何单个字符。要匹配包括 ‘\n' 在内的任何字符,请使用象 ‘[.\n]‘ 的模式。 |
| (pattern) | 匹配pattern 并获取这一匹配。所获取的匹配可以从产生的 Matches 集合得到,在VBScript 中使用 SubMatches 集合,在JScript 中则使用 $0…$9 属性。要匹配圆括号字符,请使用 ‘‘或‘ |
| (?:pattern) | 匹配 pattern 但不获取匹配结果,也就是说这是一个非获取匹配,不进行存储供以后使用。这在使用 "或" 字符 (|) 来组合一个模式的各个部分是很有用。例如, ‘industr(?:y|ies) 就是一个比 ‘industry|industries' 更简略的表达式。 |
| (?=pattern) | 正向预查,在任何匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如, ‘Windows (?=95|98|NT|2000)' 能匹配 "Windows 2000" 中的 "Windows" ,但不能匹配 "Windows 3.1" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。 |
| (?!pattern) | 负向预查,在任何不匹配Negative lookahead matches the search string at any point where a string not matching pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如'Windows (?!95|98|NT|2000)' 能匹配 "Windows 3.1" 中的 "Windows",但不能匹配 "Windows 2000" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始 |
| x|y | 匹配 x 或 y。例如,'z|food' 能匹配 "z" 或 "food"。'(z|f)ood' 则匹配 "zood" 或 "food"。 |
| [xyz] | 字符集合。匹配所包含的任意一个字符。例如, ‘[abc]‘ 可以匹配 "plain" 中的 ‘a'。 |
| [^xyz] | 负值字符集合。匹配未包含的任意字符。例如, ‘[^abc]‘ 可以匹配 "plain" 中的'p'。 |
| [a-z] | 字符范围。匹配指定范围内的任意字符。例如,'[a-z]‘ 可以匹配 ‘a' 到 ‘z' 范围内的任意小写字母字符。 |
| [^a-z] | 负值字符范围。匹配任何不在指定范围内的任意字符。例如,'[^a-z]‘ 可以匹配任何不在 ‘a' 到 ‘z' 范围内的任意字符。 |
| \b | 匹配一个单词边界,也就是指单词和空格间的位置。例如, ‘er\b' 可以匹配"never" 中的 ‘er',但不能匹配 "verb" 中的 ‘er'。 |
| \B | 匹配非单词边界。'er\B' 能匹配 "verb" 中的 ‘er',但不能匹配 "never" 中的 ‘er'。 |
| \cx | 匹配由x指明的控制字符。例如, \cM 匹配一个 Control-M 或回车符。 x 的值必须为 A-Z 或 a-z 之一。否则,将 c 视为一个原义的 ‘c' 字符。 |
| \d | 匹配一个数字字符。等价于 [0-9]。 |
| \D | 匹配一个非数字字符。等价于 [^0-9]。 |
| \f | 匹配一个换页符。等价于 \x0c 和 \cL。 |
| \n | 匹配一个换行符。等价于 \x0a 和 \cJ。 |
| \r | 匹配一个回车符。等价于 \x0d 和 \cM。 |
| \s | 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。 |
| \S | 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。 |
| \t | 匹配一个制表符。等价于 \x09 和 \cI。 |
| \v | 匹配一个垂直制表符。等价于 \x0b 和 \cK。 |
| \w | 匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]‘。 |
| \W | 匹配任何非单词字符。等价于 ‘[^A-Za-z0-9_]‘。 |
| \xn | 匹配 n,其中 n 为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如, ‘\x41′ 匹配 "A"。'\x041′ 则等价于 ‘\x04′ & "1"。正则表达式中可以使用 ASCII 编码。. |
| \num | 匹配 num,其中 num 是一个正整数。对所获取的匹配的引用。例如,'(.)\1′ 匹配两个连续的相同字符。 |
| \n | 标识一个八进制转义值或一个后向引用。如果 \n 之前至少 n 个获取的子表达式,则 n 为后向引用。否则,如果 n 为八进制数字 (0-7),则 n 为一个八进制转义值。 |
| \nm | 标识一个八进制转义值或一个后向引用。如果 \nm 之前至少有is preceded by at least nm 个获取得子表达式,则 nm 为后向引用。如果 \nm 之前至少有 n 个获取,则 n 为一个后跟文字 m 的后向引用。如果前面的条件都不满足,若 n 和 m均为八进制数字 (0-7),则 \nm 将匹配八进制转义值 nm。 |
| \nml | 如果 n 为八进制数字 (0-3),且 m 和 l 均为八进制数字 (0-7),则匹配八进制转义值 nml。 |
| \un | 匹配 n,其中 n 是一个用四个十六进制数字表示的 Unicode 字符。例如, \u00A9 匹配版权符号 (?)。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16