京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS最优尺度:分类主成分分析
一、分类主成分分析(分析-降维-最优尺度)
1、概念:此过程在减少数据维数的同时量化分类变量。分类主成份分析也表示为缩写词CATPCA(代表categorical principal components analysis)。主成份分析的目标是将初始变量集缩减为表示初始变量中发现的大部分信息的较小不相关主成份集合。当大量变量妨碍有效解释对象(主体和单元)间关系时,该方法最为有用。通过减少维数,您只需解释少量主成份,而不是大量变量。
标准主成份分析假设数值变量间为线性关系。另一方面,通过最优尺度方法,可以将变量调整为不同级别。分类变量在指定维数内得到最优量化。因此,可以为变量间的非线性关系建模。
2、示例。分类主成份分析可用于以图形方式显示工作类别、工作部门、地区、旅行量(高、中、低)和工作满意度之间的关系。您可能会发现两个维占据了大量方差。第一维可能将工作类别与地区分开,而第二维可能将工作部门与旅行量分开。您可能还会发现较高的工作满意度与中等旅行量相关。
3、统计量和图。频率;缺失值;最佳度量水平;众数;按质心坐标、矢量坐标、每变量和每维总计解释的方差;矢量量化变量的成份载荷;类别量化和坐标;迭代历史记录;转换后变量和相关矩阵特征值的相关性;初始变量与相关矩阵特征值的相关性;对象得分;类别图;联合类别图;转换图;残差图;投影质心图;对象图;双标图;三标图和成份载荷图。
4、数据。字符串变量值总是按升序字母数值顺序转换为正整数。用户定义的缺失值、系统缺失值以及小于1的值都视为缺失值;可重新编码值小于1的变量,或者给值小于1的变量加上一个常数,以使其成为非缺失值。
5、假设。数据必须至少包含三个有效个案。该分析基于正整数数据。离散化选项通过将其值分组成具有接近正态分布的类别,将自动分类小数值变量,并且将自动把字符串变量的值转换为正整数。可指定其他离散化方案。
6、相关过程。将所有变量调整为数值级别对应于标准主成份分析。在标准线性主成份分析中使用转换后的变量可获得交替绘图功能。如果所有变量都有多名义尺度级别,则分类主成份分析等同于多重对应分析。如果需要处理的是变量集,则应使用分类(非线性)典型相关性分析。
二、选项(分析-降维-最优尺度-分类主要成分-选项)
1、附加对象。指定要其成为附加对象的对象的个案编号,或者对象范围的第一个和最后一个个案编号,然后单击添加。继续操作,直到指定完所有附加对象。如果将某个对象指定为附加对象,则对于该对象将忽略个案权重。
2、正态化方法。可以指定用于标准化对象得分和变量的五个选项之一。给定分析中只能使用一种正态化方法。
2.1、主要变量。此选项可优化变量之间的关联。对象空间中的变量坐标是成份载入(与主成分的相关性,如维和对象得分)。如果您主要对变量之间的相关性感兴趣,这将非常有用。
2.2、主要对象。此选项可优化对象间的距离。如果您主要对对象之间的区别或相似性感兴趣,这将非常有用。
2.3、对称。如果主要对对象和变量之间的关系感兴趣,则使用此标准化选项。
2.4、独立。如果您想单独检查对象之间的距离和变量之间的相关性,请使用此标准化选项。
2.5、定制。可指定封闭区间[–1, 1]中的任何实数值。值为1等同于“主要对象”方法;值为0等同于“对称”方法;值为–1等同于“主要变量”方法。通过指定大于–1小于1的值,可在对象和变量上分布特征值。此方法对于制作合适的双标图或三标图很有用。
3、标准。可以指定该过程可在其计算中执行的最大迭代次数。还可以选择收敛标准值。如果上两次迭代之间的总拟合之差小于收敛值,或者达到了最大迭代次数,则算法停止迭代。
4、标注图。可用于指定在图中将使用变量和值标签还是变量名称和值。还可指定标签的最大长度。
5、图维数。可用以控制在输出中显示的维数。
5.1、显示解中的所有维数。解中的所有维数都显示在散点图矩阵中。
5.2、限制维数。显示的维数限制为绘制的对。如果限制维数,则必须选择要绘制的最低和最高维数。最低维数的范围可从1到解中的维数减1,并且针对较高维数绘制。最高维数值的范围可从2到解中的维数,表示要在绘制维数对时使用的最高维数。此指定项适用于所有请求的多维图。
6、配置。可从包含配置的坐标的文件中读取数据。文件中的第一个变量应包含第一维的坐标,第二个变量应包含第二维的坐标,依此类推。
6.1、初始。指定的文件中的配置将用作分析起点。
6.2、固定。指定的文件中的配置将用于拟合变量。拟合的变量必须选择作为分析变量,但是因为配置是固定的,所以它们视为补充变量(因此不需要选择它们作为补充变量)。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12