京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、缺失值:
具有缺失值的个案会引发严重的问题,因为典型的建模过程会简单地从分析中丢弃这些个案。如果存在少量缺失值(大约低于个案总数的5%),且这些值可以被认为随机缺失,即值的缺失不依赖于其他值,则列表删除的典型方法相对比较“安全”。“缺失值”选项可以帮助确定列表删除是否足够,并在必要时提供其他缺失值处理方法。
1、多重插补:过程提供了缺失数据模式分析,着眼于最终对缺失值进行多重插补。这意味着会产生多个版本的数据集,它们分别包含各自的插补值集。在执行统计分析时,汇集了针对所有插补数据集的参数估计,因此提供的估计结果通常比单个插补更为准确。
2、缺失值分析:提供了略微不同的描述性工具集,用以分析缺失数据(尤其是Little’sMCAR检验),并包括多种单一插补方法。注意,多重插补通常被认为优于单一插补。
缺失值分析有助于解决由不完整的数据造成的若干问题。如果带有缺失值的个案与不带缺失值的个案有着根本的不同,则结果将被误导。此外,缺失的数据还可能降低所计算的统计量的精度,因为计算时的信息比原计划的信息要少。另一个问题是,很多统计过程背后的假设都基于完整的个案,而缺失值可能使所需的理论复杂化。
1、示例。在评估白血病治疗方式时,将测量几个变量。但是,并不是针对每个患者都进行所有的测量。缺失数据的模式以表格形式显示出来,表现为随机的。EM分析用于估计均值、相关性和协方差。它还用来确定数据正在随机完全缺失。缺失值然后将由归因值替换,并保存到新的数据文件中以供进一步分析。
2、统计量。单变量统计量,包括非缺失值个数、均值、标准差、缺失值个数以及极值个数。使用列表法、成对法、EM法或回归法的估计均值、协方差矩阵以及相关性矩阵。对EM结果进行的Little的MCAR检验。按各种方法进行的均值总计。对于按缺失和非缺失值定义的组:t检验。对于所有变量:按个案与变量显示的缺失值模式。
3、数据。数据可以是分类数据或定量数据(刻度或连续)。尽管如此,您只能为定量变量估计统计数据并插补缺失数据。对于每个变量,必须将未编码为系统缺失值的缺失值定义为用户缺失值。例如,如果将对问卷项的回答不知道编码为5,并且您希望将其视为缺失,则对于此项应将5编码为用户缺失值。
4、频率权重。此过程接受频率(复制)权重。忽略复制权重为负值或零值的个案。非整数权重被截断。
5、假设。列表法、成对法和回归法估计都基于这样的假设:缺失值的模式不依赖于数据值。(此条件又称为完全随机缺失,即MCAR。)因此,当数据为MCAR时,所有估计方法(包括EM法)提供相关性和协方差的一致无偏估计。违反MCAR假设可能导致由列表法、成对法和回归法生成的有偏差的估计。如果数据不是MCAR,则您需要使用EM估计。
6、相关过程。很多过程都允许您使用列表或成对估计。“线性回归和因子分析”允许用均值替换缺失值。预测附加模块提供了几种方法,可用于按时间序列替换缺失值。
您可以使用列表法(仅限完整个案)、成对法、EM(期望最大化)法和/或回归法选择估计均值、标准差、协方差和相关性。您还可以选择插补缺失值(估计替换值)。注意,在解决缺失值问题方面,多重插补通常被认为优于单一插补。Little’s MCAR检验对于确定是否需要进行插补方面仍然有效。
1、列表法:此方法仅使用完整个案。一旦任何分析变量具有缺失值,计算中将忽略该个案。
2、成对法:此方法参见分析变量对,并只有当其在两种变量中都具有非缺失值时才使用个案。频率、均值以及标准差是针对每对分别计算的。由于忽略个案中的其它缺失值,两个变量的相关性与协方差不取决于任何其它变量的缺失值。
3、EM法:此方法假设一个部分缺失数据的分布并基于此分布下的可能性进行推论。每个迭代都包括一个E步骤和一个M步骤。在给定观察值和当前参数估计值的前提下,E步骤查找“缺失”数据的条件期望值。这些期望值将替换“缺失”数据。在M步骤中,即使填写了缺失数据,也将计算参数的最大似然估计值。“缺失”包含在引号中,因为缺失值不是直接填写的。而其函数用于对数似然。
用于检验值是否完全随机丢失(MCAR)的Roderick J. A. Little卡方统计量作为EM矩阵的脚注印刷。对于此检验,原假设就是数据完全随机缺失且0.05水平的p值显著。若值小于0.05,则数据将不会完全随机缺失。数据可能随机缺失(MAR)或不随机缺失(NMAR)。您无法假设一个或其它数据缺失,而是需要分析数据以确定数据是如何缺失的。
4、回归法:此方法计算多个线性回归估计值并具有用于通过随机元素增加估计值的选项。对于每个预测值,其过程可以从一个随机选择的完整个案中添加一个残差,或者从t分布中添加一个随机正态偏差,一个随机偏差(通过残差均值方的平方根测量)。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07