京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例。然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数。
正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式。
一
案例数据
某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目。根据多年的生产经验,你认为影响生产效率的因素主要包括A水解温度,B水解时间,C加盐量,D烘房温度,根据目前现有的生产条件,这几个因素能调整的参数大概只有三个水平,以残留蛋白作为质量指标,你决定通过正交试验来解决当前的问题。
数据来源:《SPSS13在空白列正交试验设计及其数据处理中的应用》
二
选择正交表
各因素只能调整3个水平,主要有4个因素,因此最先考虑到选用L9(34)的四因素三水平正交表,由于参数水平客观条件的限制,L16(45)正交表可以不用考虑了。
选定L9(34)正交表,遇到一个问题:因素排满,没有空白列用于统计实验误差,怎么呢?所以必须通过重复试验来统计实验误差,你决定每个组合方案重复3次。因此,本实验最终需要27次,将得到27组数据。
三
SPSS正交试验数据录入格式
网上有不少同学提到这个问题,其实数据结果组织形式和无重复试验的格式是一样的,只需要顺次增加行即可。
四
方差分析步骤
菜单操作:
分析→一般线性模型→单变量
因变量:输入残留蛋白
固定因子:输入水解温度,水解时间C加盐量,烘房温度
模型选项卡:以上四个影响因素作为主效应进行分析
方差分析结果:
四个影响因素的sig值均小于0.01,表明四个因素对生产胃蛋白酶都有极显著的影响,验证了最初你的经验。但这还不是我们最终的目的,我们需要得到提高生产效率的最优化工艺组合,直白一点,就是你必须找到每个影响因素最好的那个水平参数。
这个问题在上一篇文章中就有说明,可采用多重比较的方法就行可视化比较。
五
具体做法
多重比较选项卡:将四个具有显著影响的因素依次输入到右侧的“两两比较检验”框中,选择“duncan”法来计算。
单从数据分析的结果来看,最优工艺组合为:A3B3C2D1。值得讨论的问题:水解时间、加盐量两个因素趋势图有些异常,可能和其他两个因素存在交互作用,留给大家讨论。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27