
变量选择之SCAD算法
本文提出了一种用于同时达到选择变量和预测模型系数的目的的方法——SCAD。这种方法的罚函数是对称且非凹的,并且可处理奇异阵以产生稀疏解。此外,本文提出了一种算法用于优化对应的带惩罚项的似然函数。这种方法具有广泛的适用性,可以应用于广义线性模型,强健的回归模型。借助于波和样条,还可用于非参数模型。更进一步地,本文证明该方法具有Oracle性质。模拟的结果显示该方法相比主流的变量选择模型具有优势。并且,模型的预测误差公式显示,该方法实用性较强。
SCAD的理论理解
在总结了现有模型的一些缺点之后,本文提出构造罚函数的一些目标:
罚函数是奇异的(singular)
连续地压缩系数
对较大的系数产生无偏的估计
SCAD模型的Oracle性质,使得它的预测效果跟真实模型别无二致。
并且,这种方法可以应用于高维非参数建模。
SCAD的目标函数如下:
SCAD的罚函数与$theta$的(近似)关系如下图所示。
可见,罚函数可以用二阶泰勒展开逼近。
Hard Penality,lasso,SCAD的系数压缩情况VS系数真实值的情况如下图所示。
可以看到,lasso压缩系数是始终有偏的,Hard penality是无偏的,但压缩系数不连续。而SCAD既能连续的压缩系数,也能在较大的系数取得渐近无偏的估计。
这使得SCAD具有Oracle性质。
SCAD的缺点
模型形式过于复杂
迭代算法运行速度较慢
在low noise level的情况下表现较优,但在high noise level的情况下表现较差。
SCAD的实现
SCAD迭代公式
SCAD的目标函数如下:
时,罚函数可以用二阶泰勒展开逼近。
从而,有如下迭代公式:
根据以上公式,代入迭代步骤,即可实现算法。
SCAD的R实现
##------数据模拟--------
library(MASS)
##mvrnorm()
##定义一个产生多元正态分布的随机向量协方差矩阵
Simu_Multi_Norm<-function(x_len, sd = 1, pho = 0.5){
#初始化协方差矩阵
V <- matrix(data = NA, nrow = x_len, ncol = x_len)
#mean及sd分别为随机向量x的均值和方差
#对协方差矩阵进行赋值pho(i,j) = pho^|i-j|
for(i in 1:x_len){ ##遍历每一行
for(j in 1:x_len){ ##遍历每一列
V[i,j] <- pho^abs(i-j)
}
}
V<-(sd^2) * V
return(V)
}
##产生模拟数值自变量X
set.seed(123)
X<-mvrnorm(n = 200, mu = rep(0,10), Simu_Multi_Norm(x_len = 10,sd = 1, pho = 0.5))
##产生模拟数值:响应变量y
beta<-c(1,2,0,0,3,0,0,0,-2,0)
#alpha<-0
#prob<-exp(alpha + X %*% beta)/(1+exp(alpha + X %*% beta))
prob<-exp( X %*% beta)/(1+exp( X %*% beta))
y<-rbinom(n = 200, size = 1,p = prob)
##产生model matrix
mydata<-data.frame(X = X, y = y)
#X<-model.matrix(y~., data = mydata)
##包含截矩项的系数
#b_real<-c(alpha,beta)
b_real<-beta
########----定义惩罚项相关的函数-----------------
##定义惩罚项
####运行发现,若lambda设置为2,则系数全被压缩为0.
####本程序根据rcvreg用CV选出来的lambda设置一个较为合理的lambda。
p_lambda<-function(theta,lambda = 0.025){
p_lambda<-sapply(theta, function(x){
if(abs(x)< lambda){
return(lambda^2 - (abs(x) - lambda)^2)
}else{
return(lambda^2)
}
}
)
return(p_lambda)
}
##定义惩罚项导数
p_lambda_d<-function(theta,a = 3.7,lambda = 0.025){
if(abs(theta) > lambda){
if(a * lambda > theta){
return((a * lambda - theta)/(a - 1))
}else{
return(0)
}
}else{
return(lambda)
}
}
# ##当beta_j0不等于0,定义惩罚项导数近似
# p_lambda_d_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# return(beta_j * p_lambda_d(beta = beta_j0,a = a, lambda = lambda)/abs(beta_j0))
# }
#
#
# ##当beta_j0 不等于0,指定近似惩罚项,使用泰勒展开逼近
# p_lambda_apro<-function(beta_j0,beta_j,a = 3.7, lambda = 2){
# if(abs(beta_j0)< 1e-16){
# return(0)
# }else{
# p_lambda<-p_lambda(theta = beta_j0, lambda = lambda) +
# 0.5 * (beta_j^2 - beta_j0^2) * p_lambda_d(theta = beta_j0, a = a, lambda = lambda)/abs(beta_j0)
# }
# }
#define the log-likelihood function
loglikelihood_SCAD<-function(X, y, b){
linear_comb<-as.vector(X %*% b)
ll<-sum(y*linear_comb) + sum(log(1/(1+exp(linear_comb)))) - nrow(X)*sum(p_lambda(theta = b))
return (ll)
}
##初始化系数
#b0<-rep(0,length(b_real))
#b0<- b_real+rnorm(length(b_real), mean = 0, sd = 0.1)
##将无惩罚时的优化结果作为初始值
b.best_GS<-b.best
b0<-b.best_GS
##b1用于记录更新系数
b1<-b0
##b.best用于存放历史最大似然值对应系数
b.best_SCAD<-b0
# the initial value of loglikelihood
ll.old<-loglikelihood_SCAD(X = X,y = y, b = b0)
# initialize the difference between the two steps of theta
diff<-1
#record the number of iterations
iter<-0
#set the threshold to stop iterations
epsi<-1e-10
#the maximum iterations
max_iter<-100000
#初始化一个列表用于存放每一次迭代的系数结果
b_history<-list(data.frame(b0))
#初始化列表用于存放似然值
ll_list<-list(ll.old)
#######-------SCAD迭代---------
while(diff > epsi & iter < max_iter){
for(j in 1:length(b_real)){
if(abs(b0[j]) < 1e-06){
next()
}else{
#线性部分
linear_comb<-as.vector(X %*% b0)
#分子
nominator<-sum(y*X[,j] - X[,j] * exp(linear_comb)/(1+exp(linear_comb))) +
nrow(X)*b0[j]*p_lambda_d(theta = b0[j])/abs(b0[j])
#分母,即二阶导部分
denominator<- -sum(X[,j]^2 * exp(linear_comb)/(1+exp(linear_comb))^2) +
nrow(X)*p_lambda_d(theta = b0[j])/abs(b0[j])
#2-(3) :更新b0[j]
b0[j]<-b0[j] - nominator/denominator
#2-(4)
if(abs(b0[j]) < 1e-06){
b0[j] <- 0
}
# #更新似然值
# ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#
#
#
# #若似然值有所增加,则将当前系数保存
# if(ll.new > ll.old){
# #更新系数
# b.best_SCAD[j]<-b0[j]
# }
#
# #求差异
# diff<- abs((ll.new - ll.old)/ll.old)
# ll.old <- ll.new
# iter<- iter+1
# b_history[[iter]]<-data.frame(b0)
# ll_list[[iter]]<-ll.old
# ##当达到停止条件时,跳出循环
# if(diff < epsi){
# break
# }
#
}
}
#更新似然值
ll.new<- loglikelihood_SCAD(X = X, y = y, b = b0)
#若似然值有所增加,则将当前系数保存
if(ll.new > ll.old){
#更新系数
b.best_SCAD<-b0
}
#求差异
diff<- abs((ll.new - ll.old)/ll.old)
ll.old <- ll.new
iter<- iter+1
b_history[[iter]]<-data.frame(b0)
ll_list[[iter]]<-ll.old
}
b_hist<-do.call(rbind,b_history)
#b_hist
ll_hist<-do.call(rbind,ll_list)
#ll_hist
#
iter
##
ll.best<-max(ll_hist)
ll.best
##
b.best_SCAD
##对比
cbind(coeff_glm,b.best,b.best_SCAD,b_real)
##----------ncvreg验证-----------
library(ncvreg)
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"),lambda = 2)
my_ncvreg$beta
my_ncvreg<-ncvreg(X,y,family = c("binomial"),penalty = c("SCAD"))
summary(my_ncvreg)
my_ncvreg$beta
###用cv找最优的lambda
scad_cv<-cv.ncvreg(X,y,family = c("binomial"),penalty='SCAD')
scad_cv$lambda.min
mySCAD=ncvreg(X,y,family = c("binomial"),penalty='SCAD',lambda=scad_cv$lambda.min)
summary(mySCAD)
ncv_SCAD<-mySCAD$beta[-1]
##对比
myFinalResults<-cbind(无惩罚项回归=coeff_glm, GS迭代 = b.best,
GS_SCAD迭代 = b.best_SCAD, ncvreg = ncv_SCAD,真实值 = b_real)
save(myFinalResults,file = "myFinalResults.rda")
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07