
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程内容设计独具匠心,运用 “MVP(最小可行化产品)” 的思路,精心筛选出最核心、最实用的内容,去除一切繁杂冗余,让你在有限的时间内掌握统计学的精华。遵循 “尽量不废话、尽量说人话” 的原则,将专业知识用通俗易懂的语言表达出来,即便是零基础的小白也能轻松理解。
在数据驱动的时代,掌握统计学知识对个人职业发展与认知拓展愈发重要。然而,很多人在学习统计学的过程中被复杂的理论和公式击退。“山有木兮:统计学极简入门”课程,凭借独特的设计和丰富的教学内容,成为众多学习者的理想之选 。
统计学的本质是理解数据背后的规律,而非记忆复杂公式。"山有木兮:统计学极简入门"课程采用"极简入门",将晦涩的统计理论拆解为3大核心模块:数据描述、统计推断和决策应用。课程精选18个必学知识点,包括数据分布规律、假设检验原理、相关性分析等,每个知识点都匹配真实商业场景。比如用"电商促销效果评估"讲解A/B测试,通过"医疗临床试验"解析P值意义,让抽象概念变得触手可及。
课程采用"螺旋式"学习路径设计,让知识吸收更符合认知规律。基础阶段重点培养数据敏感度,通过"数据分类识别游戏"掌握结构化思维;进阶阶段聚焦分析技能,使用"统计方法选择决策树"轻松掌握t检验、卡方检验等工具的应用场景;实战阶段则通过跨行业项目串联知识点,如完成"零售业销售预测分析"全流程。
课程最大的特色是,用一个个通俗易懂的"案例",将统计学的理论知识点串联起来。本专栏约有19个以上的案例内容,如检验某考试中心升级题库后考生分数的方差是否有显著变化,检验某药物在实验组的指标是否低于对照组,检验减肥前后的重量是否有显著性差异,检验不同保险客户的索赔率是否存在差异,检验不同公交公司的校车到达时间的方差是否有差异)等,以及在互联网运营模块的A/B测试方案,帮您利用案例进一步理解理论,学会在工作场景中灵活应用统计学模型。
课程通过丰富多样的案例,如医学领域临床试验数据的分析、市场调研中消费者偏好的研究、教育领域学生成绩的评估等,让学习者在学习理论知识的同时,通过实际操作加深对统计学知识的理解,提升运用统计学方法解决实际问题的能力。《山有木兮:统计学极简入门》无疑是初学者踏入统计学领域,以及从业者梳理统计学知识的理想选择 。
专栏内容:
① 打开过若干次书本被劝退的初学者,希望用快速入门统计学;
② 网盘一堆课,却因没有学习氛围而放弃的学生和专业人士;
③ 统计学内容多不知道哪些是重点无处下手;
④ 懂一点Python,也懂一点统计学,但却不会用Python实现统计模型
统计学的奇妙世界正等待你去发掘,掌握这门技能,你将开启数据驱动决策的大门,解锁更多人生机遇。现在,点击报名《山有木兮:统计学极简入门(Python)》课程,免费学习统计学知识,沉浸在统计学知识与实践相结合的乐趣中,迈出成为数据洞察专家的第一步!无论是优化商业决策、探索科学奥秘,还是在数据的海洋中找寻新的职业方向,这门课程都将成为你前行的得力助手 。抓住免费学习的机会,书写属于你的数据人生!
课程报名入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
统计学,作为解锁数据价值的钥匙,正重塑着我们认识世界、解决问题的方式。当下,海量数据无处不在,掌握统计学就意味着拥有了挖掘数据宝藏的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09