
在电商、零售、甚至内容付费业务中,你真的了解你的客户吗?
有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是大客户,现在却很久没买过……如果你能精准识别这些不同类型的客户,并采取针对性的运营策略,销售额是不是会提升很多?
今天,我们来聊聊一个简单但超好用的用户分层模型——RFM模型。抛开枯燥的理论,用接地气的方式,帮你真正掌握并用起来。
RFM是Recency(最近一次消费)、Frequency(消费频率)、Monetary(消费金额)的缩写,它用来衡量客户的价值和忠诚度。
你有两个客户:
显然,小张的价值更高,更值得维护。而小李,可能已经处于流失边缘,需要挽回。
RFM模型就是用数据来量化这种“感觉”,让你能科学地判断哪些客户值得重点运营,哪些客户需要挽回。
要计算RFM,你至少需要三列数据:
假设你的数据长这样(今天是2024年4月1日):
R(Recency,最近消费天数)
R=分析日期−最近一次消费日期
例如,U001最近一次消费是3月15日,今天是4月1日,所以R = 17天。
F(Frequency,消费频率)
统计用户的总消费次数,比如U001有2次消费,U002只有1次消费。
M(Monetary,消费金额)
统计用户的总消费金额,比如U001的M=250+180=430元。
计算后的数据如下:
为了更好地分层,我们需要给R、F、M分别打分。最简单的方法是按照数据分位数进行分组,比如:
R评分(R值越小越好,说明用户更活跃)
F评分(F值越大越好,说明客户粘性更高)
M评分(M值越大越好,说明客户贡献更大)
计算后,每个用户的RFM得分如下:
根据RFM得分,我们可以把客户分成不同类型,并制定不同的营销策略:
举个例子:
RFM模型的核心价值,不只是简单地打个分、分个群,而是要让这些数据真正指导运营决策,提高业务增长。作为一个资深数据分析师,我的建议是:
RFM模型不是“算完就完”,关键在于行动。很多人计算完RFM得分后,就把它丢到PPT里汇报,然后就没有然后了。
RFM分析的价值,在于它能帮助你精准地找到值得维护的客户,并指导具体的营销策略。重要客户不只是“给点折扣”,而是要用长期运营的思维去维护,比如VIP专属权益、个性化推荐。
复购低但金额大的客户,可能对价格敏感度不高,可以尝试提供高端产品或会员服务,而不是一味打折。
快要流失的客户,“复购窗口”是有限的,如果不在30天内召回,可能后续投入再多也无效。
别死磕RFM数值,要结合业务场景解读。
如果你做的是高客单价B2B业务,一个客户一年买一次,但金额很大,F值低并不代表他价值低。如果你是做日用快消,客户每天买一次才算正常,F=2 可能就意味着流失风险。
对不同业务,RFM的评分标准可以动态调整,而不是固定的四分位。
RFM只是起点,别被局限。
想更进一步?可以加入用户行为数据,比如浏览、加购但未下单的行为,来做更细粒度的分析。结合LTV(客户生命周期价值)计算,看看哪些RFM高分用户实际上为你创造了长期利润。用AI或机器学习做聚类分析(如K-means),比手动设定RFM区间更精准。
数据分析最重要的不是方法,而是如何落地执行。 RFM只是一个工具,真正能让它产生价值的,是你如何用它去优化运营策略。真正的增长,不是靠算分,而是靠行动。
对于数据分析来说,业务分析是最重要的,所以是CDA数据分析师一级把业务分析模型作为重要考点。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11