京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“我手里有好几个产品,该怎么分配资源?要不要继续投钱?”
“这条赛道还值不值得做?是机会,还是坑?”
这是很多创业者、产品经理,甚至做自媒体的人都会思考的问题。而波士顿矩阵(BCG矩阵),就是一张简单却非常有效的决策工具,让你用最直观的方式判断哪些业务值得继续押注,哪些该及时放弃。
如果你从没听说过这个工具,别担心,我会用最接地气的方式带你搞懂它,并告诉你如何用它来判断你的业务方向。
波士顿矩阵是波士顿咨询公司在1970年代提出的,核心思想是:所有业务(或产品)都可以按照“市场增长率”和“市场份额”两个维度进行分类。
来看这张图:

简单来说,这四种业务的策略完全不同:
光看理论不够,我们来看看现实中这些业务的“命运”是怎么变化的。
明星业务,就是市场在疯涨,你还抢到了头部位置,这样的机会谁都想要。
2007年,乔布斯站在发布会上,手里拿着第一代 iPhone,说出那句经典台词:“今天,苹果要重新定义手机!”

当时,整个智能手机市场正处于起飞阶段,诺基亚、黑莓是当时的霸主,但 iPhone 带来了完全不同的触屏交互体验,很快就冲到了市场的最前排。
在这种情况下,苹果当然要砸钱!
这就是典型的明星业务思维:在风口上,必须砸钱巩固市场份额,否则别人会超车。
业务分析是所有数据分析工作的基础,不懂业务根本没法进行数据分析,也无从判断数据是否异常。
类似的例子还有:

策略:
现金牛业务就是那些已经成熟、市场份额稳定的业务。它们可能没什么增长空间,但每年都能贡献一大笔利润。
最典型的案例是微软的 Windows。
想象一下,你是微软的 CEO,手上有一个全球 PC 端市场份额 90% 的 Windows 系统,你会怎么做?
Windows 早就不是明星业务,但它仍然是微软最赚钱的“现金牛”之一,每年都能贡献几十亿美元的收入。

类似的案例还有:
策略:

问题产品业务,处于市场在疯涨,但你的市场份额很小的尴尬状态。
还记得Facebook(Meta)砸钱搞元宇宙吗?
当扎克伯格宣布 All in 元宇宙时,这个市场的确在增长,但问题是:
结果,元宇宙业务被逐步收缩,Meta 开始重新把重心放回 AI 和社交平台。

这就是一个典型的“问题产品”业务:它可能有潜力,但如果竞争力不够,砸钱进去就是个无底洞。
策略:
瘦狗业务,就是那种市场不增长,你的市场份额也不大的业务,继续做下去只会消耗资源。
最典型的例子就是诺基亚的功能机。

当年,诺基亚曾是全球手机市场的霸主,但 iPhone 和安卓智能机崛起后,整个功能机市场萎缩,诺基亚的市场份额也被一步步蚕食。
他们犹豫了很久,直到2011年才决定转向 Windows Phone,结果这个决策不仅没救活诺基亚,反而让它彻底错过了安卓智能机时代。
瘦狗业务的教训就是:有些业务,拖着不放反而更糟,早点砍掉,资源可以用在更有前景的地方。
类似的案例还有:
策略:
如果你看完这篇文章,还只是记住了“明星、现金牛、问题产品、瘦狗”四个概念,那它的价值其实并没有真正发挥出来。

因为波士顿矩阵真正的价值,不是帮你分类,而是让你做出更聪明的资源分配决策。它不是一个静态工具,而是一个动态调整的思维框架。它不是让你机械地塞进四个象限,而是帮你看到市场趋势和资源最优解。
它不仅适用于企业战略,也适用于个人职业规划、投资分析、内容创作等领域。

所以,在实践中用好波士顿矩阵,我有以下几个压箱底的建议:
一个业务今天是明星,不代表明天不会跌成瘦狗;一个问题产品,如果市场增长得够快,可能迅速变成明星。
关键是盯紧市场趋势,及时调整策略,而不是死守当前的分类。

很多人热衷追风口,觉得“明星业务”才是未来,但现实是: 真正稳固的企业,都有强大的现金牛业务支撑。用它产生的利润,去投资下一个增长点,才是最稳健的打法。

问题产品是最纠结的业务,不是砸钱就能变成明星,关键是找准撬动市场的杠杆点。先做小规模试验,找到用户痛点,再决定是否加大投入。

瘦狗业务的最大风险是消耗你的时间、资金和注意力。很多企业就是因为迟迟不愿放手,让瘦狗业务拖垮了整体增长。
及时止损,避免沉没成本陷阱,把资源投向更有潜力的方向。

市场不会等你,今天的明星,明天可能就成了现金牛,甚至被淘汰。 真正聪明的企业/个人,会在明星业务变成熟之前,提前孵化下一个明星。这样才能保持长期增长,而不是被市场抛下。
如果你要用一句话记住这篇文章,那就是:
“不断调整,不恋战,重视现金流,提前布局未来。”
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27