京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
https://edu.cda.cn/goods/show/3844?targetId=6753&preview=0
要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”。

比如突然的涨,突如其来的跌。数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果数据有涨或者跌我们都需要去查出原因的。

相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。
在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!
针对异常数据的处理,通常有五个步骤:
就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。评估这个变化,可以问“异常的范围是什么?”“此时的变化是否属于异常?”

发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行周同比、月同比或者是年同比。如果确实可以定义为自然增值,那么就没有太大的必要深究,如果定义为异常,那么就可以去挖掘导致变化的原因了。
用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。
这个步骤主要是考虑商业宣传和产品运营上的影响,是否有相关的操作可能导致该指标的变化?下面举3个例子:
(1)例如促销力度加大了,可能导致下单用户量猛增,但是销售额却没有多大变化;
(2)例如在快手上投放广告,没有在抖音上进行投放,所以产品里的北方人占比明显增加;
(3)例如在B站进行运营初见成效,导致产品中弹幕使用量、AWSL、我可以等网络用语激增;

找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。
最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。
举个栗子:你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?

发现问题:在对数据进行统计汇总时发现某一天的异常数据。
确定问题:数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?

由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。
确定原因:那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。

那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。

那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?

通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。
针对性解决问题:联系相关负责人制定及时有效的解决方案。
执行:落实和监测解决方案的执行效果。
以上五个步骤看起来简单,但它是基于对业务洞察的基础之上的,需要根据以往的经验,才能做出这些判断。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。
业务分析是所有数据分析工作的基础,不懂业务根本没法进行数据分析,也无从判断数据是否异常。
通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。
以上的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12