京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下文章来源于数有道 ,作者数据星爷
SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为我们节省多少工作量?本来想用deepseek部署,被卡出三界外,不在五行中,后来选择了通义灵码。

环境
AI环境:VScode+通义灵码
练习网站:https://sqlfiddle.com/postgresql/online-compiler
数据库:数据库是一个有组织的数据集合,通常以电子表格的形式存储。它由多个表组成,每个表代表一种特定类型的数据集合。
表:表是数据库中数据的基本存储单位,类似于Excel中的工作表。表由行(记录)和列(字段)构成。每一行代表一条记录,每一列代表一个属性。
例如,在一个电商数据库中,可能会有以下几张表:
SQL(Structured Query Language,结构化查询语言)是一种用于管理和操作关系型数据库的标准语言。它的基本结构包括以下几个部分:
假设我们有一个名为 users 的表,包含以下字段:
我们可以编写一个简单的SQL查询来获取所有用户的姓名和邮箱:
SELECT name, email FROM users;
如果我们只想获取名字中包含 "张" 的用户,可以使用 WHERE 子句:
SELECT name, email
FROM users
WHERE name LIKE '%张%';
通过理解数据库和表的概念以及SQL语言的基本结构,你可以开始构建简单的查询语句来检索和操作数据。这是学习SQL的基础,后续我们将在此基础上深入学习更复杂的查询和操作。
数据检索是SQL中最常用的操作之一,它允许你从数据库中提取所需的数据。我们将详细讲解如何使用SELECT语句及其相关子句来实现各种数据检索操作。
首先,我们创建一个包含10条员工数据的临时表 employees。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
示例 要获取所有员工的姓名和部门:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT name, department
FROM employees;
结果:

示例 要获取工资大于5000的员工信息:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT name, salary
FROM employees
WHERE salary > 5000;
结果

示例 要按工资从高到低排序员工信息:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT name, salary
FROM employees
ORDER BY salary DESC;
结果

示例 要获取前5名最高工资的员工信息,并按工资降序排序:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;
结果

示例 要获取属于 "销售部" 的前3名最高工资的员工信息,并按工资降序排序:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT name, salary
FROM employees
WHERE department = '销售部'
ORDER BY salary DESC
LIMIT 3;
结果

通过上述示例,你可以看到如何使用 WITH 子句创建一个临时表,并在此基础上进行各种数据检索操作。这些示例涵盖了 SELECT、WHERE、ORDER BY 和 LIMIT 的基本用法,帮助你更好地理解和验证查询结果。
使用COUNT(), SUM(), AVG(), MAX(), MIN()等聚合函数
使用GROUP BY对数据进行分组
首先,我们创建一个包含10条员工数据的临时表 employees。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
聚合函数用于对一组值执行计算并返回单个值。常用的聚合函数包括:
示例- count 计算总员工数:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT COUNT(*) AS total_employees
FROM employees;
结果:
total_employees
10
示例-sum 计算所有员工的总薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT SUM(salary) AS total_salary
FROM employees;
结果:
total_salary
59000
示例-avg 计算所有员工的平均薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT AVG(salary) AS average_salary
FROM employees;
结果:
average_salary
5900.00
示例-max 返回最高薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT MAX(salary) AS max_salary
FROM employees;
结果:
max_salary
8000
示例-min 返回最低薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT MIN(salary) AS min_salary
FROM employees;
结果:
min_salary
4000
GROUP BY 子句用于将结果集按一个或多个列进行分组,通常与聚合函数一起使用。
示例-count 按部门分组,计算每个部门的员工数:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;
结果:

示例-sum 按部门分组,计算每个部门的总薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT department, SUM(salary) AS total_salary
FROM employees
GROUP BY department;
结果:

示例-avg 按部门分组,计算每个部门的平均薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT department, AVG(salary) AS average_salary
FROM employees
GROUP BY department;
结果:

示例-max-min 按部门分组,返回每个部门的最高和最低薪水:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, '销售部' AS department, 5000 AS salary UNION ALL
SELECT 2, '李四', '市场部', 6000 UNION ALL
SELECT 3, '王五', '销售部', 5500 UNION ALL
SELECT 4, '赵六', '技术部', 7000 UNION ALL
SELECT 5, '孙七', '市场部', 6500 UNION ALL
SELECT 6, '周八', '技术部', 7500 UNION ALL
SELECT 7, '吴九', '销售部', 4500 UNION ALL
SELECT 8, '郑十', '市场部', 5000 UNION ALL
SELECT 9, '钱十一', '技术部', 8000 UNION ALL
SELECT 10, '王十二', '销售部', 4000
)
SELECT department, MAX(salary) AS max_salary, MIN(salary) AS min_salary
FROM employees
GROUP BY department;
结果:

通过上述示例,你可以看到如何使用聚合函数和 GROUP BY 子句来对数据进行分组和计算。这些示例涵盖了 COUNT()、SUM()、AVG()、MAX() 和 MIN() 的基本用法,并结合 GROUP BY 进行分组操作。
我们将详细讲解SQL中的多表操作,包括内连接(INNER JOIN)、左连接(LEFT JOIN)、右连接(RIGHT JOIN)和全外连接(FULL OUTER JOIN)。我们将使用 WITH 子句创建两个临时表 employees 和 departments,然后进行各种多表查询。
首先,我们创建两个临时表 employees 和 departments。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
)
内连接返回两个表中满足连接条件的所有行。
示例 要获取每个员工及其所属部门的名称:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
)
SELECT e.name, d.department_name, e.salary
FROM employees e
INNER JOIN departments d ON e.department_id = d.id;
结果

左连接返回左表中的所有行,以及右表中满足连接条件的行。如果右表中没有匹配的行,则结果为 NULL。
示例 要获取所有员工及其所属部门的名称,即使某些员工没有部门:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000 UNION ALL
SELECT 11, '无部门员工', NULL, 4000 -- 添加一个没有部门的员工
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
)
SELECT e.name, d.department_name, e.salary
FROM employees e
LEFT JOIN departments d ON e.department_id = d.id;
结果

右连接返回右表中的所有行,以及左表中满足连接条件的行。如果左表中没有匹配的行,则结果为 NULL。
示例 要获取所有部门及其所属员工的名称,即使某些部门没有员工:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部' UNION ALL
SELECT 4, '人力资源部' -- 添加一个没有员工的部门
)
SELECT e.name, d.department_name, e.salary
FROM employees e
RIGHT JOIN departments d ON e.department_id = d.id;
结果

全外连接返回两个表中的所有行,如果某个表中没有匹配的行,则结果为 NULL。需要注意的是,并非所有数据库系统都支持 FULL OUTER JOIN,例如 MySQL 不支持,但可以通过 UNION 实现类似效果。
示例 要获取所有员工及其所属部门的名称,以及所有部门及其所属员工的名称,即使某些员工或部门没有匹配:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部' UNION ALL
SELECT 4, '人力资源部' -- 添加一个没有员工的部门
)
SELECT e.name, d.department_name, e.salary
FROM employees e
FULL OUTER JOIN departments d ON e.department_id = d.id;
结果

通过上述示例,你可以看到如何使用内连接、左连接、右连接和全外连接来操作多个表。这些示例涵盖了 INNER JOIN、LEFT JOIN、RIGHT JOIN 和 FULL OUTER JOIN 的基本用法,并结合 WITH 子句创建临时表进行验证。
我们将详细讲解SQL中的高级特性,包括公用表表达式(CTE)、子查询和窗口函数。我们将使用 WITH 子句创建临时表 employees 和 departments,然后进行各种高级查询。
首先,我们创建两个临时表 employees 和 departments。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
)
公用表表达式(CTE)是一个临时结果集,可以在查询中多次引用。CTE 使用 WITH 子句定义。
示例 要计算每个部门的平均薪水,并使用 CTE 来简化查询:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
),
department_avg_salary AS (--每个部门平均薪水
SELECT department_id, AVG(salary) AS avg_salary
FROM employees
GROUP BY department_id
)
SELECT d.department_name, das.avg_salary
FROM departments d
JOIN department_avg_salary das ON d.id = das.department_id;
结果

子查询是嵌套在另一个查询中的查询。子查询可以出现在 SELECT、FROM、WHERE 子句中。
示例 要获取薪水高于平均薪水的员工:
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);
结果:

窗口函数对一组行进行计算,并返回每个行的计算结果。窗口函数通常与 OVER 子句一起使用。

ROW_NUMBER(),RANK() 和 DENSE_RANK()
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 4500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, department_id, salary,
ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary DESC) AS row_number,
RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank_salary,
DENSE_RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS dense_rank_salary
FROM employees
结果:

NTILE(2)
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 4500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, department_id, salary,
NTILE(2) OVER (PARTITION BY department_id ORDER BY salary DESC) AS ntile_2
FROM
employees;
结果:

LAG() 和 LEAD()
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 4500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, department_id, salary,
LAG(salary, 1, 0) OVER (PARTITION BY department_id ORDER BY salary) AS lag_salary,
LEAD(salary, 1, 0) OVER (PARTITION BY department_id ORDER BY salary) AS lead_salary
FROM employees;
结果:

FIRST_VALUE() 和 LAST_VALUE()
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 4500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, department_id, salary,
FIRST_VALUE(salary) OVER (PARTITION BY department_id ORDER BY salary) AS first_value_salary,
LAST_VALUE(salary) OVER (PARTITION BY department_id ORDER BY salary) AS last_value_salary
FROM employees;
结果

????注意: LAST_VALUE() 默认情况下会在窗口内逐行计算,如果需要在整个分区计算,可以使用 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 4500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, department_id, salary,
FIRST_VALUE(salary) OVER (PARTITION BY department_id ORDER BY salary) AS first_value_salary,
LAST_VALUE(salary) OVER (PARTITION BY department_id ORDER BY salary ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS last_value_salary
FROM employees;
结果:

聚合函数在窗口中的用法允许你在窗口内进行聚合计算,例如计算窗口内的总和、平均值等。这通常使用 OVER 子句来定义窗口。

计算每个员工的累积薪水(按薪水降序排列)。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT
name, salary,
SUM(salary) OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_salary
FROM
employees;
结果:

????在这个示例中,SUM(salary) OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) 计算从第一个行到当前行的累积薪水。
计算每个员工的移动平均薪水(按薪水降序排列,窗口大小为3)。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT name, salary,
AVG(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg_salary
FROM employees;
结果:

????在这个示例中,AVG(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) 计算当前行及其前两行的平均薪水。
计算每个员工的窗口内行数(按薪水降序排列,窗口大小为3)。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT name, salary,
COUNT(*) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS window_count
FROM employees;
结果:

????在这个示例中,COUNT(*) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) 计算当前行及其前两行的行数。
计算每个员工的窗口内最大值和最小值(按薪水降序排列,窗口大小为3)。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
)
SELECT name, salary,
MAX(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS max_salary,
MIN(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS min_salary
FROM employees;
结果:

????在这个示例中,MAX(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) 和 MIN(salary) OVER (ORDER BY salary DESC ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) 分别计算当前行及其前两行的最大值和最小值。
通过上述示例,你可以看到如何使用 FIRST_VALUE() 和 LAST_VALUE() 窗口函数来获取窗口内的第一个和最后一个值,以及如何在窗口中使用聚合函数(如 SUM()、AVG()、COUNT()、MAX() 和 MIN())进行复杂的计算。
下是三个综合的SQL案例,涵盖了我们之前学习的各种概念,包括数据检索、聚合与分组、多表操作以及高级特性(如窗口函数和公用表表达式)。这些案例将帮助你更好地理解和应用这些知识。
分析每个部门的员工薪资情况,包括平均薪资、最高薪资、最低薪资以及每个员工的薪资排名。
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
)
WITH employees AS (
SELECT 1 AS id, '张三' AS name, 1 AS department_id, 5000 AS salary UNION ALL
SELECT 2, '李四', 2, 6000 UNION ALL
SELECT 3, '王五', 1, 5500 UNION ALL
SELECT 4, '赵六', 3, 7000 UNION ALL
SELECT 5, '孙七', 2, 6500 UNION ALL
SELECT 6, '周八', 3, 7500 UNION ALL
SELECT 7, '吴九', 1, 4500 UNION ALL
SELECT 8, '郑十', 2, 5000 UNION ALL
SELECT 9, '钱十一', 3, 8000 UNION ALL
SELECT 10, '王十二', 1, 4000
),
departments AS (
SELECT 1 AS id, '销售部' AS department_name UNION ALL
SELECT 2, '市场部' UNION ALL
SELECT 3, '技术部'
),
department_stats AS (
SELECT department_id,
AVG(salary) AS avg_salary,
MAX(salary) AS max_salary,
MIN(salary) AS min_salary
FROM employees
GROUP BY department_id
)
SELECT e.name,
e.salary,
d.department_name,
ds.avg_salary,
ds.max_salary,
ds.min_salary,
RANK() OVER (PARTITION BY e.department_id ORDER BY e.salary DESC) AS salary_rank
FROM employees e
JOIN departments d ON e.department_id = d.id
JOIN department_stats ds ON e.department_id = ds.department_id;

分析每个销售员的销售业绩,包括总销售额、平均销售额以及每个销售员的排名。
WITH sales AS (
SELECT 1 AS id, '张三' AS salesperson, 1000 AS amount UNION ALL
SELECT 2, '李四', 1500 UNION ALL
SELECT 3, '张三', 2000 UNION ALL
SELECT 4, '李四', 2500 UNION ALL
SELECT 5, '王五', 3000 UNION ALL
SELECT 6, '王五', 3500 UNION ALL
SELECT 7, '张三', 4000 UNION ALL
SELECT 8, '李四', 4500 UNION ALL
SELECT 9, '王五', 5000 UNION ALL
SELECT 10, '张三', 5500
)
WITH sales AS (
SELECT 1 AS id, '张三' AS salesperson, 1000 AS amount UNION ALL
SELECT 2, '李四', 1500 UNION ALL
SELECT 3, '张三', 2000 UNION ALL
SELECT 4, '李四', 2500 UNION ALL
SELECT 5, '王五', 3000 UNION ALL
SELECT 6, '王五', 3500 UNION ALL
SELECT 7, '张三', 4000 UNION ALL
SELECT 8, '李四', 4500 UNION ALL
SELECT 9, '王五', 5000 UNION ALL
SELECT 10, '张三', 5500
),
sales_summary AS (
SELECT salesperson,
SUM(amount) AS total_sales,
AVG(amount) AS avg_sales
FROM sales
GROUP BY salesperson
)
SELECT salesperson,
total_sales,
avg_sales,
RANK() OVER (ORDER BY total_sales DESC) AS sales_rank
FROM sales_summary;

分析股票价格的变化趋势,包括最高价、最低价以及每日价格变化。
WITH stock_prices AS (
SELECT '2023-01-01' AS date, 100 AS open_price, 105 AS close_price UNION ALL
SELECT '2023-01-02', 105, 110 UNION ALL
SELECT '2023-01-03', 110, 108 UNION ALL
SELECT '2023-01-04', 108, 112 UNION ALL
SELECT '2023-01-05', 112, 115 UNION ALL
SELECT '2023-01-06', 115, 113 UNION ALL
SELECT '2023-01-07', 113, 118 UNION ALL
SELECT '2023-01-08', 118, 120 UNION ALL
SELECT '2023-01-09', 120, 119 UNION ALL
SELECT '2023-01-10', 119, 122
)
WITH stock_prices AS (
SELECT '2023-01-01' AS date, 100 AS open_price, 105 AS close_price UNION ALL
SELECT '2023-01-02', 105, 110 UNION ALL
SELECT '2023-01-03', 110, 108 UNION ALL
SELECT '2023-01-04', 108, 112 UNION ALL
SELECT '2023-01-05', 112, 115 UNION ALL
SELECT '2023-01-06', 115, 113 UNION ALL
SELECT '2023-01-07', 113, 118 UNION ALL
SELECT '2023-01-08', 118, 120 UNION ALL
SELECT '2023-01-09', 120, 119 UNION ALL
SELECT '2023-01-10', 119, 122
),
daily_stats AS (
SELECT date,
close_price,
LAG(close_price) OVER (ORDER BY date) AS prev_close_price,
MAX(close_price) OVER (ORDER BY date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS max_close_price,
MIN(close_price) OVER (ORDER BY date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS min_close_price
FROM stock_prices
)
SELECT date,
close_price,
prev_close_price,
max_close_price,
min_close_price,
close_price - prev_close_price AS price_change
FROM daily_stats;
6.3.4 结果

通过这三个综合案例,你可以看到如何将数据检索、聚合与分组、多表操作以及高级特性(如窗口函数和公用表表达式)结合起来,解决实际问题。这些案例涵盖了从简单到复杂的查询,帮助你更好地理解和应用SQL知识。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12