
用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情感体验。
通俗来讲,用户旅程图是一个发现用户痛点并解决痛点的工具。它鼓励以用户的视角来展示用户的整个行为旅程,从用户的触发点开始,经过各种交互和体验,直到达到目标或完成任务。
通过过绘制用户旅程图,可以帮助到产品团队更好地了解用户的需求和体验,找到改进和优化产品的机会,以提供更好的用户体验和满足用户的期望,从而为企业创造更多的商业价值。
在进入正题前,我们首先要认识到:数据本身并不能传达客户在体验产品中所经历的挫折或惊喜。因此我们首先要思考两个问题:
是什么促使了产品用户的需求?
是什么让用户犹豫使用这个产品?
分析了以上两个问题后才能更好地理解用户体验。要想更加简单清晰地阐述上述两个问题,这个时候就可以通过用户旅程分析来进行展示说明。
如上图,用户旅程除了可以遍历整个用户体验的过程,还可以用它来遍历任何问题的发生过程「Before, During, After」,以便找到解决方案或者优化问题。
示例场景:
招聘过程:在招聘某人之前,之中和之后会发生什么?
获得产品客户:获取客户之前,之中和之后会发生什么?
市场营销:客户购买之前,期间或之后发生什么?
简而言之,用户旅程能够使你更快地定位解决问题,同时便于使团队达成共识。其背后的逻辑是,每个人都在脑海中经历过这个过程,人们会在心智上建立自己的问题地图,并逐步解决它们。
用户旅程的主要工作就是列出所有事情,并将其映射到每个人都可以使用的结构中。
用户旅程图是将一个人完成某个目标而经历的所有过程和行为,作为一种可视化工具直接、清晰地描述了人机交互时的体验。
其优势包括:
宏观地查看用户体验时的心路历程。
直观地呈现出用户的痛点,以便分析产品/服务在各环节中的优劣。
深度了解用户行为,协助用户分类。
从图中调整信息架构,进一步更新产品以优化用户体验。
通过创建可视化地图,项目团队可以更加清晰地进行用户旅程分析,有效地推动后续业务协作。
用户旅程图的适用性非常地广泛,可以应用在各行各业,无论是产品、服务、应用程序还是其他领域,都可以通过用户旅程图来更好理解用户体验过程、帮助我们发现问题和改进机会。
比如宜家或超市的人流动线设计,车站和机场的出入口标识牌设计、软件产品使用体验、硬件产品的使用体验等等,都可以使用用户旅程图来进行分析。
用户旅程地图通常包含6个组成要素:用户角色,阶段,行为目标,触点,情感,需求和痛点。
用户角色:指用户在使用产品或服务时扮演的角色,如潜在用户,新用户,忠实用户,竞对用户等。
阶段:指用户旅程中以时间或事件而划分出的不同阶段,例如意识阶段,考察阶段,浏览阶段,对比阶段,购买阶段和使用阶段等。
行为目标:指用户在每个阶段中的目标和期望,例如搜索信息,对比产品,购买产品或获得支持等。
触点:指用户与产品或服务进行互动的各种渠道和方式,例如渠道:网站,应用程序,社交媒体,热线电话,电子邮件等;方式:电脑,手机等。
情感:用户在每个阶段的情感表现,包括满足,困惑,兴奋,失望等。
需求和痛点:用户在每个阶段所面临的需求,期望和障碍。
一般而言,一种典型用户画像对应一个或者多个用户旅程图,因为往往每种用户使用软件的目的和行为都不一样,每种都会有一个用户旅程。但是某些特殊情况,如行为链路上,行为模式相似,就可归为一起。
用户旅程图绘制主要分为五大步骤:
确定客户画像是一切工作的前提,客户旅程地图是基于客户画像,并对客户与产品或服务互动的全过程进行展示。可以通过客户访谈、市场观察、模拟环境、客户日记等方式对客户进行定性,但是需要注意的是,我们的客户喜好是多变的,不同时间、不同客户角色的需求和痛点也会存在差异,对应的客户画像也要与时俱进。
通过客户画像,企业可以了解目标客户的需求、偏好与痛点,从而了解客户的购买目标。要了解购买目标还可以通过汇总客户测试反馈、使用客户分析工具等等方式。
触点是指客户与产品交互的关键点,客户在购买产品前、中、后与品牌接触的任何一点都值得被注意,包括网站访问、社交媒体互动、客户电话等等。站在客户视角复现客户旅程可以帮你更好地识别触点。
客户旅程需要包含客户动作的各个关键阶段,例如了解阶段、考虑阶段、购买阶段、使用阶段、售后阶段等。每个阶段的数据都需要被完整收集,包括搜集客户在每一个操作时的想法、见解与情绪,你可以将想法和情绪曲线相结合,方便你更快速的辨别各个阶段痛点。
客户在持续地变化和发展,客户旅程地图绘制好后需要定期完善和更新,自己或邀请客户过一遍来进行验证可以发现更多的问题。除此以外,每当产品或服务有重大改动时,客户旅程地图也需相应调整。
用户旅程图中的图例可以分为:流向型图例、分割型图例、图标型图例、线型图等4种类型。
流向型主要是指用户旅程的流转示意,用户与产品的互动关系等。通常是用箭头表示,指明了行动的流向,上下游之间的关系。
分割型图例指的是将画面划分为不同区域的线段或形状。用户旅程图在横向层面,有用户不同操作环节的划分,可以用泳道图来示意;在纵向层面,有业务、接触点、用户、产品服务、后台、支持系统等层次的划分,通过实线段来示意。
用户旅程图中的图标型图例,主要包含用户体验三个层级的icon,分别代表了:
用户体验好
体验一般/感受弱
体验欠佳/较差
在颜色上也有一定的区分度,用绿色代表好,橙色代表一般,红色代表不好;再配合情绪曲线的绘制,可以很清晰地看到用户痛点和产品的待优化点。
用户旅程图中的线型图例,特指情绪曲线,用一条连续的折线段表示出来,可以看到用户在整个行为流程中的情绪变化。
总的来说,无论哪种客户旅程地图都应该从客户的角度出发,更深入地了解客户需求,最终提供更优质的客户体验。
在当今这个被数据洪流席卷的时代,数据已成为企业运营与决策的核心驱动力。当前,数据分析已成为衡量职业竞争力的重要标尺。它不再是数据分析师的专属技能,而是每一位职场人士都应掌握的通用语言,是提升工作效率、优化决策质量、推动业务增长的关键所在。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11