
要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨数据分析的整体框架,为你的数据探索之旅绘制一幅精准的地图。
数据分析的第一步,要明确我们想要解决的问题以及期望达成的目标。
例如,一家电商企业发现近期销售额出现波动,要先确定具体问题:是特定产品的销售下滑?还是某个地区的市场份额萎缩?亦或是整体营销活动效果不佳?明确问题后,进一步设定目标,如找出销售额下滑的主要原因,并制定相应的解决方案,在接下来的一个月内将销售额恢复到正常水平的 90% 以上。
问题与目标的精准界定,为后续的数据收集、分析方法选择以及结果解读提供了明确的方向,确保每一个分析步骤都紧密围绕着解决实际业务问题展开。
目标既定,接下来便是收集与整合相关数据。数据来源广泛多,需要精心挖掘与筛选。
内部数据源涵盖企业运营的各个环节,如销售系统中的订单数据、客户关系管理系统中的客户信息、财务系统中的收支记录等。外部数据源则包括市场调研报告、行业统计数据、社交媒体数据等。
以一家餐饮企业为例,除了自身的收银系统数据和会员信息,还可以收集美食推荐平台上的用户评价、周边商圈的人流量统计数据等外部信息,以更全面地了解市场动态和消费者需求。
在收集数据后,整合数据成为关键。不同来源的数据可能格式各异、质量参差不齐,就像不同形状的拼图碎片,需要我们进行清洗、转换与合并,使其成为一个完整、准确且可用的数据集合。
描述性统计分析能快速计算出数据的均值、中位数、标准差等关键指标,让我们对数据的集中趋势、离散程度和分布形态有初步的认识
数据可视化则将抽象数据转化为直观图形。利用柱状图、折线图、散点图等丰富多样的图表类型,我们可以清晰地看到数据之间的关系与趋势。
在对数据有了基本的了解后,将运用更为复杂的数据分析方法和模型,挖掘数据之间深层次的因果关系,预测未来趋势,为决策提供有力支持。
这两年随着数字化人才需求量越来越高,CDA数据分析师大火,CDA数据分析师一级就包括了大量的 “概率与统计”“数据可视化”的内容,帮助你系统地学习统计学知识。想提升数据思维能力和数据分析技能的同学。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
回归分析是常用的分析方法之一,它帮助我们建立变量之间的数学模型,预测因变量的变化。例如,一家房地产企业可以通过建立回归模型,以房屋面积、房龄、周边配套设施等为自变量,预测房屋价格的走势,为项目定价和投资决策提供依据。
聚类分析则将数据对象按照相似性进行分组,发现数据中的自然结构。比如,在客户关系管理中,利用聚类分析将客户分为不同的群体,针对每个群体制定个性化的营销方案,提高营销效果和客户满意度。
模型构建并非一蹴而就,需要我们不断地尝试、优化与验证。通过评估模型的准确性、可靠性和适用性,确保模型能够真实地反映数据关系,为决策提供可靠的预测和建议。
经过深入分析与模型构建得到结果,但这还不是终点,我们需要对分析结果进行深入解读,将数据语言转化为业务语言,为决策提供清晰、明确的支持。
结果解读不仅要关注数据指标的变化,更要结合业务背景和实际情况,挖掘其背后的商业意义。
例如,分析发现某产品在特定地区的市场份额下降,我们不能仅仅停留在数据层面,而要进一步探究是竞争对手的新产品冲击、当地市场需求变化,还是自身营销渠道的问题。
基于对结果的准确解读,我们为企业决策提供具体的建议和方案。是调整产品策略、优化营销渠道,还是加大研发投入?
数据分析整体框架是一个系统、严谨且循环往复的过程。从问题与目标设定出发,历经数据收集与整合、探索与理解、深入分析与模型构建,最终落脚于结果解读与决策支持。每一个环节都相互关联、不可或缺,共同构成了数据分析的智慧链条。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
全球知名咨询公司麦肯锡曾指出,数据已深入渗透至各行各业的每一个角落,成为推动生产力发展的重要因素。对海量数据的挖掘和应用,预示着新一轮生产率的提升和消费者盈余的涌现。这正是我们所处的“大数据时代”的典型特征。 从低薪到高薪的蜕变,本质是能力、认知、思维、技能等多维度的升华和改变。近来就业市场比较艰难,CDA数据分析师认证对于求职很有帮助。在刷招聘软件的时候可以看到,很多企业在招聘时会注明CDA数据分析师持证人优先。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10