
随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近的文章。
2023世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人员。
随着各行各业的数字化转型,未来数年全球数据总量将继续保持高速增长态势。如此庞大的数据海洋,若没有专业的数据分析师进行挖掘、整理与解读,那它们就只是一堆毫无价值的乱码。而企业为了在激烈的市场竞争中获取优势,必然需要依靠数据分析师从这些数据中提炼出有价值的信息,如消费者的潜在需求、市场的最新趋势、业务流程中的优化点等。因此,只要数据的 “开采” 与利用需求存在,数据分析师就永远有其用武之地。
一些人担忧数据分析师会被技术所取代。但实际上,这恰恰是数据分析师迎来新飞跃的契机。在 2025 年,掌握先进技术的数据分析师将如虎添翼,能够开展更为复杂、深入和精准的分析工作,为企业提供更高层次的价值服务。
数据分析离不开数学和统计学知识。至少要掌握基本的数学运算,如代数、几何等,这些知识有助于理解数据之间的关系。而统计学更是数据分析的核心工具,重点学习概率、均值、中位数、标准差、相关性、回归分析等概念。
例如,通过计算均值和标准差可以了解数据的集中趋势和离散程度,相关性分析能够帮助我们发现变量之间的关联。
Excel 是一款非常基础且实用的数据处理工具。它可以进行简单的数据录入、整理和计算。例如,通过使用函数(如 VLOOKUP、SUMIF 等)来汇总和关联数据,利用数据透视表功能快速分析数据的不同维度。对于小型数据集的分析和初步探索,Excel 是一个很好的选择。
学习资源:微软官方网站有 Excel 的教程,从基础操作到高级功能都有详细的讲解。此外,网上也有很多 Excel 技巧分享的教程,可以帮助你快速提升 Excel 技能。
数据可视化能够将复杂的数据以直观的图表形式展现出来,帮助我们更好地理解数据和发现规律。Tableau 和 PowerBI 是两款流行的可视化工具。Tableau 具有强大的可视化功能和丰富的图表类型,能够快速创建交互式的可视化作品;PowerBI 则与微软的生态系统紧密结合,方便对 Excel 等数据源进行可视化处理。
学习方式:可以下载这些工具的试用版,通过官方提供的示例数据集进行操作练习。同时,它们的官方网站也有教程和案例分享,帮助你掌握如何将数据转换为有吸引力的可视化图表。
一个完整的数据分析流程通常包括问题定义、数据收集、数据清洗、数据分析、结果解释和决策建议。
如果你想分析一家电商店铺的销售情况,首先要明确问题,如 “哪些产品的销售增长最快?” 然后收集店铺的销售数据,清洗掉其中的错误数据和重复数据,接着运用合适的分析方法(如分类汇总、时间序列分析等)进行分析,最后解释分析结果并提出相应的决策建议,如加大销售增长快的产品的库存和推广力度。
除了前面提到的统计学方法,还需要学习数据挖掘方法,如聚类分析、分类分析等。
聚类分析可以将数据对象划分为不同的群组,例如将客户根据消费行为划分为不同的客户群体,以便企业进行精准营销;分类分析则可以根据历史数据预测新数据的类别,比如预测客户是否会购买某个产品。
可以从身边的数据入手,如分析自己的消费记录、运动数据等。或者从网上找一些公开的数据集,如 UCI 机器学习库中的数据集,进行分析。
数据分析入门需要建立知识体系、掌握工具、学习方法和流程,并通过实践不断积累经验。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11