
交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
Weight | 中 | 轻 | 重 |
---|---|---|---|
High | |||
中 | 1 | 1 | 1 |
低 | 1 | 2 | 1 |
高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
High | Weight | Size | |
---|---|---|---|
0 | 高 | 重 | 大 |
1 | 高 | 轻 | 中 |
2 | 高 | 中 | 小 |
3 | 中 | 中 | 中 |
4 | 中 | 轻 | 中 |
5 | 中 | 重 | 大 |
6 | 低 | 重 | 中 |
7 | 低 | 轻 | 小 |
8 | 低 | 中 | 小 |
9 | 高 | 重 | 大 |
10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
Weight | 中 | 轻 | 重 | |||
---|---|---|---|---|---|---|
Size | 中 | 小 | 中 | 小 | 中 | 大 |
High | ||||||
中 | 1 | 0 | 1 | 0 | 0 | 1 |
低 | 0 | 1 | 0 | 2 | 1 | 0 |
高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
A1970 | A1980 | B1970 | B1980 | X | id | |
---|---|---|---|---|---|---|
0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id
列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
X | A | B | ||
---|---|---|---|---|
id | year | |||
0 | 1970 | -1.085631 | a | 2.5 |
1 | 1970 | 0.997345 | b | 1.2 |
2 | 1970 | 0.282978 | c | 0.7 |
0 | 1980 | -1.085631 | d | 3.2 |
1 | 1980 | 0.997345 | e | 1.3 |
2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
famid | birth | ht1 | ht2 | |
---|---|---|---|---|
0 | 1 | 1 | 2.8 | 3.4 |
1 | 1 | 2 | 2.9 | 3.8 |
2 | 1 | 3 | 2.2 | 2.9 |
3 | 2 | 1 | 2.0 | 3.2 |
4 | 2 | 2 | 1.8 | 2.8 |
5 | 2 | 3 | 1.9 | 2.4 |
6 | 3 | 1 | 2.2 | 3.3 |
7 | 3 | 2 | 2.3 | 3.4 |
8 | 3 | 3 | 2.1 | 2.9 |
把famid
, birth
两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
ht | |||
---|---|---|---|
famid | birth | age | |
1 | 1 | 1 | 2.8 |
2 | 3.4 | ||
2 | 1 | 2.9 | |
2 | 3.8 | ||
3 | 1 | 2.2 | |
2 | 2.9 | ||
2 | 1 | 1 | 2.0 |
2 | 3.2 | ||
2 | 1 | 1.8 | |
2 | 2.8 | ||
3 | 1 | 1.9 | |
2 | 2.4 | ||
3 | 1 | 1 | 2.2 |
2 | 3.3 | ||
2 | 1 | 2.3 | |
2 | 3.4 | ||
3 | 1 | 2.1 | |
2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27