
数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表
import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot
以姓名
为index
,以各科目
为columns
,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
科目 | 数学 | 英语 | 语文 |
---|---|---|---|
姓名 | |||
张三 | 80 | 100 | 91 |
李四 | 100 | 96 | 80 |
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
科目 | 姓名 | 数学 | 英语 | 语文 |
---|---|---|---|---|
0 | 张三 | 80 | 100 | 91 |
1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt
以姓名
为标识变量的列id_vars
,以各科目
为value_vars
,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
姓名 | 科目 | value | |
---|---|---|---|
0 | 张三 | 数学 | 80 |
1 | 李四 | 数学 | 100 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 英语 | 96 |
4 | 张三 | 语文 | 91 |
5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
专业 | 班级 | 科目 | 平均分 | 及格人数 | |
---|---|---|---|---|---|
0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
4 | 计算机 | 1班 | 高数 | 93 | 34 |
5 | 计算机 | 1班 | 线代 | 66 | 43 |
6 | 计算机 | 2班 | 高数 | 88 | 45 |
7 | 计算机 | 2班 | 线代 | 92 | 44 |
8 | 统计学 | 1班 | 高数 | 83 | 46 |
9 | 统计学 | 1班 | 线代 | 83 | 41 |
10 | 统计学 | 2班 | 高数 | 84 | 49 |
11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 85 | 85.0 |
高数 | 67 | 72.5 | |
统计学 | 线代 | 90 | 74.5 |
高数 | 95 | 83.5 | |
计算机 | 线代 | 87 | 79.0 |
高数 | 79 | 90.5 |
补充说明:
df.pivot_table()
和df.pivot()
都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()
方法适用于长表中不存在重复值的情况,而df.pivot_table()
方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10