
数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表
import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot
以姓名
为index
,以各科目
为columns
,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
科目 | 数学 | 英语 | 语文 |
---|---|---|---|
姓名 | |||
张三 | 80 | 100 | 91 |
李四 | 100 | 96 | 80 |
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
科目 | 姓名 | 数学 | 英语 | 语文 |
---|---|---|---|---|
0 | 张三 | 80 | 100 | 91 |
1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt
以姓名
为标识变量的列id_vars
,以各科目
为value_vars
,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
姓名 | 科目 | value | |
---|---|---|---|
0 | 张三 | 数学 | 80 |
1 | 李四 | 数学 | 100 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 英语 | 96 |
4 | 张三 | 语文 | 91 |
5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
专业 | 班级 | 科目 | 平均分 | 及格人数 | |
---|---|---|---|---|---|
0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
4 | 计算机 | 1班 | 高数 | 93 | 34 |
5 | 计算机 | 1班 | 线代 | 66 | 43 |
6 | 计算机 | 2班 | 高数 | 88 | 45 |
7 | 计算机 | 2班 | 线代 | 92 | 44 |
8 | 统计学 | 1班 | 高数 | 83 | 46 |
9 | 统计学 | 1班 | 线代 | 83 | 41 |
10 | 统计学 | 2班 | 高数 | 84 | 49 |
11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 85 | 85.0 |
高数 | 67 | 72.5 | |
统计学 | 线代 | 90 | 74.5 |
高数 | 95 | 83.5 | |
计算机 | 线代 | 87 | 79.0 |
高数 | 79 | 90.5 |
补充说明:
df.pivot_table()
和df.pivot()
都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()
方法适用于长表中不存在重复值的情况,而df.pivot_table()
方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11