京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表

import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
| 姓名 | 科目 | 成绩 | |
|---|---|---|---|
| 0 | 张三 | 语文 | 91 |
| 1 | 张三 | 数学 | 80 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 语文 | 80 |
| 4 | 李四 | 数学 | 100 |
| 5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot 以姓名为index,以各科目为columns,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
| 姓名 | 科目 | 成绩 | |
|---|---|---|---|
| 0 | 张三 | 语文 | 91 |
| 1 | 张三 | 数学 | 80 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 语文 | 80 |
| 4 | 李四 | 数学 | 100 |
| 5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
| 科目 | 数学 | 英语 | 语文 |
|---|---|---|---|
| 姓名 | |||
| 张三 | 80 | 100 | 91 |
| 李四 | 100 | 96 | 80 |

df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
| 科目 | 姓名 | 数学 | 英语 | 语文 |
|---|---|---|---|---|
| 0 | 张三 | 80 | 100 | 91 |
| 1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt 以姓名为标识变量的列id_vars,以各科目为value_vars,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
| 姓名 | 科目 | value | |
|---|---|---|---|
| 0 | 张三 | 数学 | 80 |
| 1 | 李四 | 数学 | 100 |
| 2 | 张三 | 英语 | 100 |
| 3 | 李四 | 英语 | 96 |
| 4 | 张三 | 语文 | 91 |
| 5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
| 专业 | 班级 | 科目 | 平均分 | 及格人数 | |
|---|---|---|---|---|---|
| 0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
| 1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
| 2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
| 3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
| 4 | 计算机 | 1班 | 高数 | 93 | 34 |
| 5 | 计算机 | 1班 | 线代 | 66 | 43 |
| 6 | 计算机 | 2班 | 高数 | 88 | 45 |
| 7 | 计算机 | 2班 | 线代 | 92 | 44 |
| 8 | 统计学 | 1班 | 高数 | 83 | 46 |
| 9 | 统计学 | 1班 | 线代 | 83 | 41 |
| 10 | 统计学 | 2班 | 高数 | 84 | 49 |
| 11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
| 及格人数 | 平均分 | ||
|---|---|---|---|
| 专业 | 科目 | ||
| 数学与应用数学 | 线代 | 85 | 85.0 |
| 高数 | 67 | 72.5 | |
| 统计学 | 线代 | 90 | 74.5 |
| 高数 | 95 | 83.5 | |
| 计算机 | 线代 | 87 | 79.0 |
| 高数 | 79 | 90.5 |
补充说明:
df.pivot_table()和df.pivot()都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()方法适用于长表中不存在重复值的情况,而df.pivot_table()方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12