
在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()
、concat()
、merge()
。
append()函数用于将一个DataFrame或Series对象追加到另一个DataFrame中。
import pandas as pd
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
df1.append(df2,ignore_index=True)
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | b | 2 |
3 | c | 3 |
4 | d | 4 |
concat()函数用于沿指定轴将多个对象(比如Series、DataFrame)堆叠在一起。可以沿行或列方向进行拼接。
先看一个上下堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.concat([df1,df2],axis =0) # 上下拼接
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
再看一个左右堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b']})
df1
A | |
---|---|
0 | a |
1 | b |
df2 = pd.DataFrame({'B': [1, 2],
'C': [2, 4]})
df2
B | C | |
---|---|---|
0 | 1 | 2 |
1 | 2 | 4 |
pd.concat([df1,df2],axis =1) # 左右拼接
A | B | C | |
---|---|---|---|
0 | a | 1 | 2 |
1 | b | 2 | 4 |
merge()
函数用于根据一个或多个键将两个DataFrame的行连接起来。类似于SQL中的JOIN操作。
先看一下 inner
和 outer
连接
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'inner')
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
pd.merge(df1,df2,how = 'outer')
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
3 | d | 4 |
再看左右链接的例子:
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'C': [2, 3, 4]})
df2
A | C | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'left',on = "A") # 左连接
A | B | C | |
---|---|---|---|
0 | a | 1 | NaN |
1 | b | 2 | 2.0 |
2 | c | 3 | 3.0 |
pd.merge(df1,df2,how = 'right',on = "A") # 右连接
A | B | C | |
---|---|---|---|
0 | b | 2.0 | 2 |
1 | c | 3.0 | 3 |
2 | d | NaN | 4 |
pd.merge(df1,df2,how = 'inner',on = "A") # 内连接
A | B | C | |
---|---|---|---|
0 | b | 2 | 2 |
1 | c | 3 | 3 |
pd.merge(df1,df2,how = 'outer',on = "A") # 外连接
A | B | C | |
---|---|---|---|
0 | a | 1.0 | NaN |
1 | b | 2.0 | 2.0 |
2 | c | 3.0 | 3.0 |
3 | d | NaN | 4.0 |
补充1个小技巧
df1[df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中也存在的行
A | B | |
---|---|---|
1 | b | 2 |
2 | c | 3 |
df1[~df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中不存在的行
A | B | |
---|---|---|
0 | a | 1 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28