京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行K均值聚类分析时,如何确定最优的分类数是一个非常重要的问题。一般来说,确定分类数需要考虑数据的特征和研究目的。下面将介绍一些常用的方法来确定最优的分类数。
肘部法是一种比较简单的方法,它的原理是计算不同分类数下的误差平方和(SSE),找到SSE随分类数增加而降低的拐点。这个拐点称为“肘部”,对应的分类数就是最优分类数。通常情况下,随着分类数的增加,SSE会逐渐减小,但是当分类数增加到一定程度时,SSE的降幅会变得越来越小,而这个点就是所谓的“肘部”。
使用肘部法需要画出不同分类数下的SSE曲线图,然后根据图形判断“肘部”在哪里。选择最优分类数的过程通常是比较主观的,因此需要结合实际情况进行判断。
轮廓系数法是一种基于样本之间距离和聚类结果的评估方法,它可以衡量每个样本被分配到的簇的紧密度和分离度。轮廓系数法计算每一个样本的轮廓系数,然后对所有样本的轮廓系数求平均值作为聚类结果的整体评价指标。轮廓系数的取值范围在-1到1之间,越接近1表示样本被正确地分类到了相应的簇中,越接近-1表示样本被错误地分类到了其他簇中。
使用轮廓系数法需要计算不同分类数下的平均轮廓系数,然后选择具有最大平均轮廓系数的分类数作为最优分类数。与肘部法相比,轮廓系数法能够更客观地评估聚类效果,并且可以避免一些特别情况下肘部法判断不准确的问题。
Gap统计量法是一种基于随机模拟的评估方法,它通过比较实际数据集和随机生成数据集的聚类结果来确定最优分类数。具体来说,Gap统计量法会随机生成一些数据集,然后在每个数据集上运行K均值聚类算法得到聚类结果,同时也在原始数据集上运行K均值聚类算法得到聚类结果。然后通过比较聚类结果之间的误差平方和来计算Gap统计量。最优分类数是使得Gap统计量达到最大的分类数。
使用Gap统计量法需要注意的是,随机生成数据集的数量会影响结果的可靠性。一般来说,需要进行多次随机模拟,并选择最常出现的分类数作为最优分类数。
DB指数是一种基于样本之间距离和簇内距离的评估方法,它可以比较不同分类数下的聚类效果,同时也可以衡量聚类簇之间的分离度和聚类簇内部的紧密度。DB指数的取值范围在0到正无穷之间,越接近0表示聚类效果
越好,越大则表示聚类效果越差。
使用DB指数需要计算不同分类数下的DB值,并选择具有最小DB值的分类数作为最优分类数。和轮廓系数法一样,DB指数能够比较客观地评估聚类效果,但是它对于数据集中存在异常点或噪声的情况表现相对较差。
总之,确定最优分类数是K均值聚类分析中非常重要的一个步骤,选择合适的方法需要根据实际情况进行判断。如果数据集没有明显的分布特征,可以尝试多种方法进行比较,以选择最优分类数。同时,需要注意不同方法之间的局限性,并结合实际情况进行综合考虑。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12