
获得面试对许多工作来说自然是必不可少的,数据科学工作也不例外。虽然关于这一主题的资源肯定不缺乏,但实际可行的建议却很少。在我找工作的过程中,我知道超过70%的求职者是通过某种形式的关系网找到工作的。我知道我应该“联系招聘人员,建立我的关系网,以便进入这个领域”。但即使知道了这一点,我仍然面临着一个重要的问题:如何?
我第一次寻找数据科学工作是在2017年2月我即将完成研究生学业的时候。我尽我所能得到面试,包括…
在三个月的全职工作承诺下(即每天至少花8小时)求职后,我终于通过AngelList获得了第一次面试机会。
我第二次发现自己在寻找数据科学工作是在2018年12月,当时的初创公司解雇了我。这一次,我在一个月内获得了10个面试机会,使用了50份申请和18份推荐(总共花了不到30个小时)。这种巨大的差异并不是因为我有工作经验。事实上,我第二次在就业市场上并没有更有竞争力。这种剧烈的变化是因为我第一次就做错了!这并不是因为关于获得数据科学面试的文章误导或不正确,而是它们只告诉我该做什么,而不是如何做。
在这篇文章中,我不仅将分享要做什么(只有3种方法而不是10种),以及如何有效地获得面试。你会在这篇文章中找到策略、脚本和其他免费资源,这将帮助你在求职中有条不紊。具体来说,本博客回答了这些问题:
在我们开始之前,你更喜欢视频吗?观看这段YouTube视频,而不是阅读。
有三种获得面试的方法:原始应用程序、联系网守和获取推荐。原始申请意味着简单地向职位空缺提交你的简历。虽然这是一个简单的方法,但它也有低效率的倾向。联系看门人可能更有效,但需要更多的努力。获得推荐人是最有效的方法,但它也需要最多的时间和精力(假设你还不认识愿意推荐你的人)。下图给出了这三种方法在努力/时间和有效性方面的可视化。
当我们第一次想到求职板来检查我们的求职时,我们通常会立即转向流行的在线求职板,如LinkedIn、GlassDoor或事实上。第一次找工作时,我在LinkedIn上提交了数百份申请,但得到零回复。事实上,我的一些正在进行职业转型的朋友也发现自己在领英上没有得到回复。当我开始第二次找工作时,我没有在LinkedIn上提交一份申请。
为什么?问题是,每个职位在一周内都有数百名申请者申请。如果你仅仅依靠这些受欢迎的求职板,你得到回应的机会很小。你在和堆积如山的候选人竞争!
不幸的是,近几年来,LinkedIn已经成为一个为招聘人员服务的平台,这些招聘人员希望接触到具有确切经验和资历的潜在候选人。它不是一个为缺乏经验的求职者服务的平台,因为你必须与数百(有时数千)的求职者竞争一个职位。
解决这个问题的一个方法是在不太受欢迎的网站上应用。使用尚未成为主流的网站。怀疑?爱德华·哈里斯(Edouard Harris)在他的博客文章中出色地解释了为什么“公司更关注通过不太为人所知的渠道申请的申请人”。这里有一些我和我认识的人尝试过的网站,并被证明是有帮助的。有些甚至是专门与数据科学相关的。
此外,还有一些较小的在线招聘板比三个最大的回应率更高。
无论何时在任何职务公告板上申请,请尝试向正在雇用的人发送个性化通知。调查公司(使用公司网站、谷歌和Glassdoor)并解释为什么你会是该职位的最佳人选。个性化将大大增加你得到回应的机会。
尽管我推荐的网站的回复率往往比大的求职板高,但招聘人员仍然需要几周时间才能做出回应,因为他们总是有一堆简历需要审查。现在您想尝试第二种方法--直接联系网关守卫。使用这种方法,我能够比原始应用程序更快地获得响应。
把关人是指您感兴趣的公司中的技术招聘人员或数据科学家。大公司通常有专门招聘数据科学家的技术招聘人员,但小公司的数据团队可能更独立。如果你能赢得守门人的支持,它可以让你在招聘过程中继续前进。
以下是赢得守门人的几个步骤:
电子邮件演讲应该简洁完整。你的电子邮件可能会被转发给另一个人,没有人会为你复制和粘贴多封电子邮件,所以推销需要有一切。一封好的电子邮件包含两个部分:
为了使事情更简单,这里有一个模板。
如果你在几天内得到回应,太好了!但是,如果您在一周左右的时间内没有收到它,请发送后续电子邮件给守门人。根据我自己和我朋友的经历,对后续邮件的回应率高于第一封邮件。这是我用于后续邮件的模板:
虽然您当然可以使用这两个模板作为起点,但不要复制它们。如果看门人看到完全相同的电子邮件模板,就会留下负面印象。你可以改变一切。你可以把它变长或变短。只要记住,主要的想法是表明你的兴趣,并发送一切必要的。
第一次找工作时,我联系了校友、有共同朋友的人,甚至随机的人来获得推荐。然而,我最终没有得到任何。相比之下,我第二次找工作时,我的关系网里的人告诉我,他们愿意推荐我,甚至还没等我开口。
随着时间的推移,我学到了一些关于要求转诊的误解。获得推荐是为了让熟悉您的工作的人向他们的公司提供热情的推荐。它是而不是骚扰你在LinkedIn或其他地方发现的陌生人。此外,大多数时候,后一种方法不起作用。
获得推荐与联系守门人的不同之处在于,首先要与在科技公司工作的人建立关系,无论他们的职业是什么。不管他们是产品经理、软件工程师、产品设计师还是其他什么。一段感情有很长的路要走。Haseeb Qureshi在博客上发表了一篇进军科技行业的文章。关于网络的部分尤其精彩。库雷希说…
…人们讨厌当你向他们要求工作时。
给你工作?为什么?他们不认识你。他们为什么要给你工作?他们为什么要在你身上浪费时间?
信息性面试的威力在于,你不是在谈论你,而是在谈论他们。人们喜欢谈论自己。他们喜欢教别人。他们想帮忙。但他们不想被陌生人缠着寻求帮助。
如果你继续这样做,人们会看到你的好奇心和你的真诚。他们会相信你的故事,他们会希望向你推荐。
这听起来像很多工作,尤其是当你以前没有做过的时候,但实际上只有4个步骤来正确地建立一段关系:
正是这些步骤让我在第二次求职中找到了18个推荐人。如果你遵循所有这些步骤,你会得到强大的推荐!这不仅对你第一次找工作有帮助,而且对以后的求职也有帮助。
下面是一个冷电子邮件模板,你可以作为第一次外联的参考。这里的要点是使它个人化,并表明你真正的兴趣。
同样,世界很小。不要复制完全的脚本。花时间定制您的消息,因为从长远来看,这是值得的。
根据你的目标和可用性,你可以选择三种方法中的一种或多种来获得面试。但是不管你使用哪种方法,一份好的简历是关键。这是让招聘人员扭转局面的事情。
简历是你成就的总结。它应该是简短的,所以它不是一个展示你所知道或能做的一切的地方。添加太多的内容只会让人们用不必要的信息不堪重负。因此,在你的数据科学简历中,你希望突出与数据科学相关的最重要的东西,如工作经验、培训和相关技能。当招聘人员或招聘经理看到你的简历时,他们应该立即觉得你在数据科学方面有丰富的经验,你是一个合格的候选人。
下面是我在测试自己的简历,与许多招聘人员和招聘经理交谈,并审阅其他人的简历后创建的一些写简历的规则。
归根结底,获得数据科学面试是很困难的,尤其是对初学者来说。即使你已经努力工作了几个月,但没有得到任何回应,这可能会令人沮丧。希望这篇文章能让任何有抱负的数据科学家在找到工作的过程中变得更加清晰。如果你想要更多的建议,请随时联系我,我很乐意帮忙!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28