京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果你是一名软件工程师,在一家数据公司找工作,我会告诉你一个公开的秘密--大数据的爆炸性增长意味着世界是你的。作为一名招聘经理,我可以告诉你,大多数工作在薪酬、头衔、福利和额外津贴方面都并驾齐驱。
令人遗憾的是,工程文化被忽视了。
我不是在说“有趣”的表面迹象。我指的是一个公司有意组织自己为客户创造最大价值的指标--即使这意味着以一种非正统的方式管理它的组织。
根据我作为一名工程团队领导的经验,我将分享表明一家公司是为了创新和忍耐而建立的五大标志。请放心,无论你去哪里,你都会得到丰厚的报酬。但是,如果你进入这个领域是为了满足一个真诚的目标,建立一些有价值的东西,在下次面试时扭转局面,评估一家公司的工程文化,选择值得你的团队。
对于那些轻视通才、认为通才不如专家有价值的人,请三思而后行。
全栈工程师是一个全面的球员,不依赖任何人来完成他们的工作。它们可以单独为您的组织提供价值。
简而言之,他们很棒。
本周,我请我们出色的全栈开发人员Ilan Techenak开发一个服务,该服务在我们的部署中运行,监视Google的BigQuery数据仓库,并允许用户从我们的Databand应用程序中与之集成。
让我们花一点时间来承认完成这项任务所涉及的子任务所需的知识和专长的广度:
一个全栈工程师需要拥有大量的技能集才能完成这一系列的任务。但更重要的是,它们首先围绕着如何实现业务目标,以及如何为客户(从而为公司)创造影响和价值。全堆栈工程师会处理一个大问题,例如“我们想要监视BigQuery”,并将其分解为不同学科、不同代码语言、不同技术和不同专业知识中的多个子任务。在他们的核心,他们是专家问题解决者,他们根据给出的任何问题自己找出解决方案。
就像我说的,他们很棒。
一个重视跨学科能力的公司通常包含新的想法、看待事物的新方法和解决问题的新方法。倾向于创新的公司不能不以更有创造性的方式运作。
尽管如此,当全栈工程师得到专家和基础设施团队的支持时,他们会茁壮成长,这些团队专注于基础设施的健全性,并在风险开始增加时发出警告。
看看Jonny Barda吧--一个顶尖的后端工程师,一个代码哲学的粉丝,一个纯粹主义者,一个真正复杂的工程问题的爱好者。一个全栈工程师需要像Barda这样的人来帮助设置参数,以确保我们支付技术债务,并在设计规划和审查期间提升架构问题。
说实话,巴尔达在我们队里是不可或缺的。他为我们的进步提供保证,因为他确保我们的系统不会经常崩溃,也不会变得几乎无法维护。
除了我们团队中的专家,我们还有一个基础设施团队,由全公司的人物组成,他们帮助导航船只。我们的架构师确保我们所有的服务都处于良好的状态,帮助工程师解决最大的设计问题,并领导基础设施团队。我们的前端技术领导拥有我们的UI架构,并能够选择正确的技术栈,以确保我们有正确的测试和共享组件的基础。
最后,我们有DevOps管理员负责所有的部署、监控和CI/CD。
正如您所看到的,系统的任何部分都不缺乏所有权。
我们的全栈工程师依赖于基础架构团队来思考大的公司范围的问题,共享知识,解决复杂的问题,并防止我们做其他团队已经在做的双重工作。
共同作用,每个功能发挥独特的作用,以建立一个将为我们的客户带来价值的产品。让他们作为一个团队闪耀的是他们在优势上的差异以及他们如何互补。对于我们的全栈工程师被授权在他们测试和解决问题的探索中打破的一切,有一个专家和一个基础设施团队来防止问题的出现。
有意让团队拥有广泛技能的公司会更大胆地承担更大的风险,以追求更好的结果,从而成为更具竞争力的企业。虽然大胆的决定可能会导致风险升级,但专家和基础设施团队提供的支持确保了所有风险实际上都得到了计算和减轻。
软件的变化是对客户理解的变化。接受这一现实意味着敏捷必须被构建到工程文化中。即兴创作并不罕见,而是团队经常发挥的独特能力。
想象一下,你有一个乐队--就像我们在Databand一样--你的乐队正在并行地创作许多新歌。在制作过程中,灵感来袭,你需要添加更多的声音,如一个小吉他线或几个低音鼓踢来完善的声音。全栈工程师是那种能在飞行中即兴发挥的多乐器乐队成员。当您运行多个复杂的项目时,它们尤其能证明它们的价值,这些项目涉及许多活动部件。我向你保证,伟大的音乐很大程度上归功于即兴创作,伟大的软件也是如此。
如果我们按照功能专业组织我们的团队--前端团队、后端团队等等--需要一个全栈工程师的事情现在需要3-4个不同的团队来处理。
在Databand公司,我们确保我们的产品团队由70%的真正的全栈工程师和30%的专业专家组成。这允许每个团队完全专注于一个业务目标,并拥有成功所需的所有能力。我们的基础设施团队致力于解决跨公司的工程难题,改善我们的内部开发经验,并确保我们奠定正确的基础,使我们能够有效地发展。
工程团队的组成是衡量工程文化优先级的最简单的方法之一。拥有更大比例的全栈工程师的团队将能够始终如一地敏捷执行。敏捷不是一个目标,而是一种有机的存在方式。
根据Emily Heaslip在Index上的文章,度量开发人员似乎基于以下KPI:
尽管如何度量软件工程是一个非常有争议的话题,但上面的5个项目可以给我们提供一个合理的工具来度量专家或面向基础设施的工程师。
在度量这些类型的工程师时,您将关注他们的代码质量、他们创建和解决的技术债务的数量、他们如何减少所需的维护工作、他们的测试复盖率以及他们为解决方案选择了最终工具的事实。
全栈工程师需要用一种不同的方法来衡量,而我们关注的是其他类型的性能:
总而言之,全栈工程师应该根据他们被要求达到的大的商业目标来衡量。
这种衡量标准的区别很重要,因为它告诉你公司是否真的要让员工成功。
要注意的最重要的标志是,一家公司看中的不仅仅是一套与他们相匹配的技能。找一家比你所有技能和经验的总和更看重你的公司。
我们所有的招聘经理都认识到,技能是可以学习和磨练的。我们有一些非常优秀的开发人员,他们都来自不同的经验水平。它们的共同点是我们认为比正统的代码掌握更有价值的品质:
谦逊。虽然我认为这在任何环境中都是一个重要的特质,但在新事物永不消失的研发环境中,这是最重要的。谦逊标志着尝试新事物的信心和对错误的容忍之间的平衡。
快速学习者。当我们招聘开放角色时,我们并不总是在寻找非常有经验的开发人员。我们只是要求应聘者让我们相信他们能够轻松快速地学习新技术。
对成长的渴望。我们认为的所有候选人都是聪明和敏锐的。那些脱颖而出的人总是表现出一种有朝一日成为特定领域专家的动力。
业务驱动。我们的团队中不乏出色的开发人员,他们可以编写漂亮、优雅的代码。但是,我们的团队与其他团队的区别在于,我们的开发人员并不满足于不服务于业务目的的漂亮代码。他们都认为自己是我们底线的贡献者。他们是以客户为导向的,当他们的工作得到满意的客户时,他们感到最受认可。
虽然这五个标志是帮助你评估未来雇主的极好指标,但它们绝不是全面的。当你考虑机会时,还有其他因素是至关重要的。下次面试时,请记住,投资于你潜力的公司才是值得你花时间和才干的公司。
准备好问题来帮助你做出决定。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06