京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由数据科学家米斯拉·图尔普
作为一名资深数据科学家被视为一种圣杯,尽管许多人并不知道担任一个高级职位的真正含义。最常见的印象是,作为一名资深数据科学家意味着你知道关于数据科学的一切,你是一名真正的专家。这是真的,但只是在一定程度上,因为数据科学中的收入永远不会结束。此外,作为一名资深数据科学家,不仅仅是技术知识,还有很多东西要做。
你可能会想,是的,但我为什么要关心呢?我相信了解数据科学家遵循的标准路径是很重要的,这样你就可以更明智地决定你想走哪条路。简单地说,你了解的越多,就越容易在两家公司、两个职位或两个项目之间做出选择。
[参加免费数据科学入门迷你课程,可以更好地了解什么是数据科学,它如何在更大的人工智能世界中定位,以及对学习有什么要求。]
让我们来看看数据科学家平时的职业是什么样子。
背景
作为一名初级数据科学家,对你的期望是拥有基本的数据科学知识。你的能力应该足以独自完成你的任务,或者在更资深的同事的帮助下完成任务。在这个时间点上,你不会有太多专业的动手经验。
学习
你应该对学习持开放态度,不要害怕问很多问题。更多的资深同事会很乐意帮助你学习。作为一名初级数据科学家,如果你每天都学到一些新东西,这并不奇怪。
项目
你的主要责任将是分配给你的任务。你会在遇到问题时得到更资深数据科学家的协助。除了您的技术能力之外,您还需要很好地理解与您的特定任务相关的领域的各个部分。
在初级数据科学家之后,您可能会处于一个过渡角色,在这个角色中,您将被简单地称为:数据科学家。
背景
在这一点上,您对数据科学的主要概念和技术的知识必须是扎实的。虽然这并不意味着你已经知道了一切。相反,它意味着你知道很多事情,你也知道你不知道的。你可能已经在这个级别上获得了一些很好的实践经验。
学习
学习永远不会结束,所以你仍然对新的想法和方法持开放态度。你仍然会问很多问题,但你也会被别人问到问题。初级同事带着他们的问题来找你。你仍然学习新的东西,也许不是每天,而是每隔一个月。您试图更深入地了解某些技术和工具。
项目
您是项目决策过程的一部分。你对项目的背景有一个很好的整体理解,但你仍然不需要知道比你需要做你的工作更多的东西。
然后是高级数据科学家的职位。在这一点上,您基本上是数据科学家的一切,具有一些额外的能力和责任。让我们看看它们是什么。
背景
您对主要概念和技术有坚实的理解,也对它们的陷阱有更深的了解。你在从事项目时获得了这些知识。现在你有了扎实的实践经验。
学习
因为你已经掌握了基本概念,所以你更容易学习更高级的主题。你仍然对学习持开放态度。教和支持更多的初级同事是你工作的一部分。
项目
你是项目的领导者。你不仅是决策过程的一部分,而且你领导着它。项目的成功是你的责任,在许多情况下,也是你团队成员的幸福。在领导项目的同时,你还需要与外界沟通。向业务方汇报是你的责任。在项目中工作时,您需要记住非技术约束,并确保将技术团队推向正确的方向。您必须对上下文和域有一个整体和完整的理解。保持目标和交付是你的责任。
当然,这并不是世界上每个公司的每个数据科学家的职业生涯都是这样的。此外,你可能是一个自由数据科学家,或者你可能创办你的公司,成为一个CTO,那么你的道路看起来会非常不同。但总的来说,从我和数据科学界的人交谈所学到的,这是一个普通数据科学家职业道路的很好的表现。
我们今天研究这个问题的原因是,每家公司都有自己的结构,自己的规则和自己的道路,当你得到选择时,你想知道该选择哪一个。有些人会倾向于更多的技术工作,因为你得到了更高的职位,有些人会倾向于更多的管理和行政工作。你可以用这篇文章中的解释作为一个基线,来找出你在旅途的高级阶段想要达到的位置,并相应地校准你的求职。当然,计划和偏好会随着时间而改变。但是,有一个想法,你想在哪里结束比盲目地进入它要好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06