
想了解2021年新数据自由职业者的数据分析咨询率吗?作为一名数据分析自由职业者,你准备好提高你的费率了吗?你来对地方了。
继续阅读,学习我的最佳策略,以帮助你作为一个数据分析自由职业者或顾问的2倍你的速度。
事实是--如果你正在阅读这篇文章,并且已经以自由职业者的身份进行某种数据分析工作,你很可能收费不够。
在我指导数据专业人员建立6位数的数据业务的工作中,我的许多客户来找我收费远低于他们应该收费的水平。虽然许多人最终获得了6位数的合同(10%的导师服务客户在与我签约的前7个月就有了!),但他们通常是从苦苦挣扎的自由职业者开始的。
所以,你可以说我对帮助数据自由职业者在他们的业务中取得一些严重的提升略知一二!
让我们进入我的最佳建议如何大幅提高您的利率,尽快在明天。
当我在这篇文章中谈到数据分析咨询时,我指的是销售数据分析服务--这很容易被营销为以下内容:
关于数据分析服务提供的更详尽的列表,请在这里查看DwellTec如何分解他们的数据分析服务类型。
但老实说,我与您分享的方法也适用于其他类型的数据服务。因此,无论您提供A/B测试、数据挖掘、数据工程、数据科学还是机器学习,您都可以将这些定价策略应用于您的数据业务,并看到令人难以置信的结果。
这个问题的答案很简单。
大多数数据自由职业者的收费都不够。
让我们看看这些数字--无论是西方还是非西方自由职业者。
从我们对各种数据自由职业者UpWork简介的调查中,我们发现有经验的美国自由职业者正在以每小时28美元到250美元的速度出售他们的数据专业知识。
但平均费率只有97.50美元--这意味着美国大多数有经验的数据分析自由职业者每小时收费不到100美元。
现在,让我们谈谈非西方自由职业者。根据我们2021年的Upwork研究,经验丰富的印度自由职业者正在以每小时5美元至199美元的速度出售他们的数据专业知识。
但平均价格为37.50美元--这意味着印度大多数有经验的数据分析自由职业者每小时的收费不到40美元。
这里有两个大错误。
因此,如果这些利率被低估了,数据分析自由职业者应该瞄准什么样的范围?
让我们看看作为一个数据自由职业者,你实际上需要收取多少钱来经营一个有利可图的业务。
最简单的经验法则是,你需要收取员工实得工资的两倍。
这有两个很大的原因。
让我们探索2021年新数据自由职业者的数据分析咨询率!我要讨论的第一类自由职业者是西方经济体的新数据自由职业者。
作为一个新的数据自由职业者,您很可能已经参加了一些数据实现课程,您已经建立了一些投资组合,但仍然没有建立起来。你还没有完全建立起你的在线可信度,你也没有那些外部基准来验证你可以交付结果。
如果您属于此类,您希望至少收取$150/小时。
如果你是一个生活在非西方经济体的新的数据自由职业者,比如你在印度或菲律宾,你会希望至少100美元/小时。
现在,让我们假设你有一个kickass投资组合,胡言乱语的证明,你所在领域的学位,以及一些外部实体来验证你可以得到你承诺的结果。在这种情况下,您需要收取300美元/小时的最低费用。
如果你在一个非西方经济体,这对你来说可能有点棘手,但我仍然会努力争取300美元/小时。为了控制这些溢价率,你需要确保你的品牌是符合鼻烟和满足西方客户的期望。你也想花时间展示证明和评论,证明你有能力为你的客户获得令人难以置信的结果。
为了建立一个成功的自由职业者数据业务,您必须(我重复一遍,必须!)遵循这两条黄金法则:
你很可能在过去被教导用你的小时费率给客户报价。是时候完全忘记那个建议了。
相反,您将提出一个包价格。这是对某些交付成果或实现某些项目里程碑的固定费用。
既然我们已经探索了2021年新数据自由职业者的数据分析咨询费率,让我们讨论如何打包您的服务。为了创建完美的软件包,您需要遵循以下步骤。
当然,你会想弄清楚你交付包裹需要多长时间。这就是你如何确保你至少赚300美元/小时的方法。
现在,你可能会想,“这听起来很棒,但是我在哪里可以找到客户来购买这个包呢?”
问得好!
至于在哪里卖你的包裹,我会劝阻你去像Upwork这样的地方。通常,像这样的自由职业者市场变成了一场“向底部竞争”,这使得自由职业者很难收取高价。
当然,你会想在你的网站上发布你的包裹,然后尝试通过社交媒体来推动流量到你的网站。你甚至可以在你的社交媒体渠道上制作一个关于如何与你合作的专题帖子或亮点,并链接到你的网站以了解更多信息。关于如何让高薪客户进入您的数据业务的更多策略,请务必查看这篇文章。
我希望这篇文章为你提供了一些关于2021年新的数据自由职业者以及有经验的人的数据分析咨询率的更清晰的信息!请记住:通过从每小时的定价结构转换到高级数据服务包,您将能够迅速扩大您的业务规模,并在本周内将您的费率翻倍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29