
数据分析师是世界上最受欢迎的专业人士之一。这些人借助数据帮助公司做出知情的商业决策。
现在有很多关于数据科学的炒作。
然而,数据科学的进入门槛非常高。这是一个竞争非常激烈的领域,每个来自不同教育背景的人都希望进入。
大多数数据科学职位都要求你拥有量化领域的研究生学位。然而,我认识的大多数数据分析师都来自完全无关的背景,也没有技术学位。
通过参加在线课程和新兵训练营,可以很容易地获得数据分析技能。学习曲线不像数据科学中那样陡峭,可以在更短的时间内学习。
即使您以前没有编程或技术经验,您也可以在短短几个月内获得成为数据分析师所需的技能。
在做了3个月的实习后,我收到了加入公司担任数据分析师的offer。
在本文中,我将描述我学习数据分析的步骤。找到这些资源并为自己创建路线图花了大量的试验和错误。
如果您遵循这些步骤,您可以在短短几个月内学习获得入门级数据分析工作所需的技能。你甚至可以做得比六个月更快,这取决于你每天花在学习上的时间。
要进入分析领域,你首先需要学习一门编程语言。Python和R是该领域中最常用的两种语言。
如果您刚刚起步,我强烈建议您学习Python。它比R更方便用户,也更容易拿起。Python还有大量的库,这些库使数据预处理等任务变得更加容易。
Python的使用也比R更广泛。如果将来要进入web开发或机器学习等领域,您将不需要学习新的语言。
a)2020年完整的Python训练营:从零到Python中的英雄:
如果你是一个完全没有编程经验的初学者,请参加这门课程。本课程将带您学习Python语法的基础知识,并学习变量、条件语句和循环。本课程由Udemy上最好的导师之一何塞·波蒂利亚教授。
b)学习Python进行数据分析和可视化:
一旦您了解了Python的基础知识和语法,就可以开始学习如何使用它分析数据。本课程将引导您浏览特定于数据分析的库,如Numpy、Matplotlib、Pandas和Seaborn。
在学习这两门课程后,您将对Python及其在分析领域的使用有一个基本的了解。然后,我建议继续练习这门语言。
要获得实践,请访问编码挑战网站,如HackerRank和LeetCode。我强烈建议HackerRank。他们有不同难度的编码挑战。从最简单的开始,然后努力向上。
当您开始从事分析工作时,您每天都会面临编程问题。像HackerRank这样的网站将有助于提高你解决问题的技能。
每天花大约4-5个小时解决Python HackerRank问题。这样做大约一个月,您的Python编程技能将足以找到一份工作。
SQL技能是获得一份分析工作所必需的。您的日常任务通常涉及从数据库中查询大量数据,并根据业务需求操作这些数据。
许多公司将SQL与其他框架集成,并希望您了解如何使用这些框架查询数据。
SQL可以在Python、Scala和Hadoop等语言中使用。这将根据您工作的公司而有所不同。但是,如果您了解用于数据操作的SQL,您将能够轻松地使用其他SQL集成框架。
我通过Udacity的tookthisfree课程来学习用于数据分析的SQL。DataCamp还有一个用于data analyticstrack的PopulationSQL可以试用。
您将需要知道如何分析数据并从中获得洞察力。知道如何编码或查询数据是不够的。您需要能够用这些数据回答问题和解决问题。
要学习Python中的数据分析,您可以参加我上面提到的Thisudemy课程。您还可以追求数据分析师的职业轨迹DataCamp。
从数据中获得洞察力之后,您应该能够呈现这些洞察力。涉众需要根据您所展示的洞察力做出业务决策,因此您需要确保您的展示清晰简洁。
这些见解通常借助数据可视化工具来呈现。可视化可以使用Excel、Python库或像Tableau这样的商业智能工具创建。
如果你想成为一名数据分析师,我建议学习Tableau。它是最常用的报告工具之一,受到大多数雇主的追捧。
Kirill Eremenko的这门课程是学习画面的最好资源之一。
完成前三个步骤后,您就已经具备了获得数据分析入门级工作的所有必要技能。
现在,你需要向潜在的雇主展示这些技能。如果你不是来自技术背景,你需要向招聘人员展示你有成为分析师所需的技能。
为此,我强烈建议建立一个数据分析组合。在Tableau中构建仪表板,使用Python分析Kaggle数据集,并撰写关于新技能的文章。
你可以在这里看一下我的投资组合。
以下是您可以在投资组合中展示的一些数据分析项目示例:
在你的简历上展示这样的项目会让你在潜在的雇主面前脱颖而出。
确保围绕你创建的项目讲述故事。记录您创建项目所采取的每一个步骤,并写一篇关于它的文章。你甚至可以创建自己的博客并发布这些文章。
这增加了你的文章落入他人手中的几率,这意味着它被潜在雇主看到的几率更高。
如果你想进入数据行业,数据分析是一个很好的起点。与机器学习等领域相比,它的进入壁垒较低。
如果你喜欢讲故事和创建演示文稿,你会喜欢在分析领域工作。你的日常工作将包括向非技术人员解释技术概念,你将需要努力提高你的沟通技能。
请记住,数据分析是人们一生都在努力学习的领域。即使是成为一名分析师所需的个人技能也需要一辈子才能学会,所以不可能在短短几个月内掌握。
本文只针对试图获得数据分析入门级工作的人。
按照上面的步骤,我在6个月左右的时间里找到了一份分析方面的工作。即使你以前没有数据经验,每天投入大约5-6个小时,你也能做到。
教育是改变世界最有力的武器
-纳尔逊·曼德拉
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18