
以下是受此博客启发的KDnuggets民意调查结果:
放松!数据科学家不会在10年内灭绝,但角色会改变
随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒,如缺乏数据和计算能力,已经被扫除,不断涌现的新数据初创公司(有些公司每天只需一杯咖啡就能访问数据),所有强大的云计算都消除了对昂贵的现场硬件的需求。除了三位一体的先决条件之外,实现的技能和诀窍可以说已经成为数据科学中最普遍的方面。人们不需要看很远就能找到兜售口号的在线教程,如“在几秒钟内实现X模型”,“在几行代码内将Z方法应用于数据”。在一个数字世界里,即时满足已经成为游戏的名称。虽然提高可访问性在表面上并不有害,但在令人眼花缭乱的软件库和闪亮的新模型之下,数据科学的真正目的已经变得模糊,有时甚至被遗忘。因为它不是为了这样做而运行复杂的模型,也不是为了优化任意的性能度量,而是用作解决现实世界问题的工具。
一个简单但相关的例子是Iris数据集。有多少人用它来演示一个算法,而不留心思考萼片是什么,更不用说为什么我们要测量它的长度了?虽然对于可能更有兴趣在他们的曲目中添加一种新模式的初露头角的从业者来说,这些似乎是微不足道的考虑,但对于植物学家埃德加·安德森来说,这并不是微不足道的,他编目了所讨论的属性来理解鸢尾花的变异。尽管这是一个人为的例子,但它展示了一个简单的观点;主流变得更加专注于“做”数据科学,而不是“应用”数据科学。然而,这种失调并不是数据科学家衰落的原因,而是一种症状。为了了解问题的根源,我们必须后退一步,鸟瞰一下。
数据科学有一个奇怪的区别,它是少数几个让实践者没有领域的研究领域之一。药学专业的学生成为药剂师,法律专业的学生成为律师,会计专业的学生成为会计师。数据科学专业的学生因此必须成为数据科学家?但是什么的数据科学家?数据科学的广泛应用是一把双刃剑。一方面,它是一个强大的工具箱,可以应用于任何生成和捕获数据的行业。另一方面,这些工具的普遍适用性意味着用户很少会在此之前对所述行业有真正的领域知识。然而,在数据科学兴起的时候,这个问题并不重要,因为雇主们在没有完全理解它是什么以及如何将它完全集成到他们的公司中的情况下,就急于利用这项新生的技术。
然而,近十年后,企业和它们所处的环境都发生了变化。他们现在努力与以既定行业标准为基准的大型根深蒂固的团队一起实现数据科学的成熟度。迫切的招聘需求已经转向问题解决者和批判性思维者,他们了解业务、各自的行业及其利益相关者。导航几个软件包或反流几行代码的能力不再足够,数据科学从业者也不再被编码的能力所定义。no code、AutoML解决方案(如DataRobot、RapidMiner和Alteryx)的日益流行就证明了这一点。
数据科学家将在10年内灭绝(要么放弃),或者至少角色头衔将是。展望未来,被统称为数据科学的技能集将由新一代精通数据的业务专家和主题专家承担,他们能够用自己深刻的领域知识进行分析,无论他们是否会编码。他们的头衔将反映他们的专业知识,而不是他们展示专业知识的手段,无论是合规专家、产品经理还是投资分析师。我们不需要回头看很远就能找到历史性的先例。在电子表格出现的时候,数据输入专家是非常令人垂涎的,但现在,正如Cole Nussbaumer Knaflic(“用数据讲故事”的作者)恰当地观察到的那样,熟练使用Microsoft Office suite是最低限度的。在此之前,用打字机触摸打字的能力被认为是一项专业技能,然而随着个人计算机的可访问性,它也被认为是一项专业技能。
最后,对于那些考虑从事数据科学工作或开始学习的人来说,经常回顾一下你无疑会遇到的维恩图可能会对你有很好的帮助。它将数据科学描述为统计学、编程和领域知识的汇合。尽管每一个都占有相等份额的相交面积,但有些可能会保证比其他的更高的权重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01