京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Leon Wei,Instamentor.com创始人,前高级经理。苹果的机器学习。
在2021年初离开苹果的最后一份工作之前,我已经做了六份企业工作,全职专注于InstamentorandSQLPad:我在Covid期间开始的两个副业项目。
但随着巨大的轨迹和增长,它们需要我的全力关注。我别无选择,只好离开在苹果的轻松工作。
今天,我不是在谈论Etherinstamentororsqlpad,因为它们仍处于早期阶段,未来有足够的时间进行研究。
相反,我想回顾一下我迄今为止的职业生涯,并分享几个故事,讲述在过去的14年中,我是如何将公司工作收入增长14倍的。
如果我能做到,你肯定能做到。
TLDR。
我在2007年开始了我的第一份全职工作,年薪美元。14年后的2020年,我14x年收入超过100万美元。
2004:我从中国获得学士学位后来到美国学习高等数学。
我很幸运:威廉玛丽学院应用科学系慷慨地为我提供了全额奖学金(我将永远感激,去部落!)和一份兼职研究助理工作,每月有1500美元的丰厚津贴(每年18K美元)。
2006:我的博士学位。顾问决定加入另一所大学,开始一个全新的学术项目,因为这是全新的,他们没有博士学位。学生,所以我不能和他一起移动。
回想起来,这可能是我在研究生院学习期间发生的最好的事情。
正如史蒂夫·乔布斯所说,“你不能把向前看的点连接起来,你只能把向后看的点连接起来。所以你必须相信这些点在你的未来会以某种方式联系在一起。“
事情就是这样。
我总是觉得在有限的实验数据样本上工作的积极性不高(在我的研究领域,收集数据非常昂贵)。
然而,作为一名数据研究人员,您几乎总是希望拥有一个更大的数据集:开发更好的统计模型并了解更多关于样本的信息,这通常会导致更好的模型性能。
起初我很恐慌,但很快意识到我有两个选择,要么找另一个博士。顾问,完成我的博士学位。(这肯定会让我父母感到骄傲)或者离开博士学位。程序,硕士毕业,找工作。
我决定辞去博士学位。并于2006年底开始找工作。
我很快得到了几个工作面试。2006年,美国经济非常火爆,就业机会很多,房地产市场也在过去几年里蓬勃发展。今天听起来很耳熟,不是吗?
我最终接受了一份数据挖掘研究(又名数据分析师)的工作,并被调到波士顿,年薪高达美元。
我几乎天真地以为我花不了那么多钱,所以没有太多犹豫,我买了一辆新萨博93,以取代我10年的福特福睿斯。
哦,当我收到第一张薪水,看到扣除的税款,我花了一年多的时间才还清我的汽车贷款(27K美元)时,我是不是很震惊。
但不管怎样,这仍然比我以前的研究助理工作要好得多。我挣了差不多4倍的钱,所以生活很棒。
2008-2010:我换了几份工作,搬到了西海岸(西雅图,华盛顿州)。我在当时世界上最大的在线广告网络公司Specific Media开始了一份新工作。
一年后,他们收购了MySpace,几年后,他们被时代公司收购。
收入:70K=>93K(15%)=>100K(20%)
2011年:我以110万美元的起始底薪加入亚马逊。他们还向我提供了7万美元RSU(4年归属)、35万美元第一年登录奖金和4万美元第二年登录奖金,每年约为15万美元:比我上一份工作增加了50%。
2013年:离开亚马逊,在CheggIPO前阶段加入,底薪190万美元,股票期权价值数百万美元(根据招聘团队的说法)。
(我也搬到了硅谷,后来遇到了很多了不起的人。)
嘿,谁不想去上市,发财,再也不用工作了?
但事实证明,2013年对IPO来说是糟糕的一年。
那一年上市的公司屈指可数,几乎都在股市上表现不佳。
2014:我加入了苹果公司(我一直是苹果产品的粉丝),所以当苹果公司的招聘人员联系到领英时,我非常兴奋,并非常努力地准备工作面试。
几周后,我幸运地通过了他们的面试(由于假期的原因,总共花了两个多月的时间)。
尽管我不得不做了一个小的基本工资削减,我得到了很好的补偿,以及签约奖金。
快进5到6年(2016年我离开去创建了一家机器学习初创公司,2017年回到苹果),2020年,我总共获得了大约5000股苹果股票,以今天的价值(每股160美元),我从公司工作中获得的总收入约为1至110万美元。
根据我的经验:我在公司工作中最显著的加薪来自苹果公司股票的升值,我也见过类似的情况发生在我以前的亚马逊同事身上。
当我第一次加入亚马逊时,它的股票大约是每股120美元,所以在过去的十年里,30涨到~3600美元。哇哦。
在我看来,获得50万或七位数收入的最可靠方法之一是加入一家FAANG公司,并在那里呆上至少四年,以获得所有最初的RSUs。
加入一家上市前的公司是非常有趣和令人兴奋的,但上市后你可能会很成功,也可能不会很成功(想想2018年加入优步,或者2019年加入WeWork)。
很多因素,时机,以及投资的一般经济环境都在IPO后的股票期权中发挥作用。
尽管如此,我永远不会忘记Chegg在纽约证券交易所上市那天的公司派对。今天真是太棒了!
几点注意:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28