
作者Renato Boemer,Renato Boemer
所以,你研究数据科学已经有一段时间了,现在你期待着下一步:找到你的第一份工作,成为一名数据科学家。然而,如果这不是你的第一份工作,那么这可能是你第一次申请一个与你之前的职业无关的角色。那么,为什么不从别人的错误中吸取教训呢?
在我关于将职业生涯转向DataScience的帖子中,我从DataQuest的在线学习开始。然后,今年早些时候,我做出了我职业生涯中最好的决定之一:我报名参加了Le Wagon训练营--我还为此写了《使徒行者》。尽管训练营本质上是密集的,但任何职业转变中最困难的部分是找到你的“第一份工作”。
最近,我加入了一家名为NextDoore的公司,是一家总部位于英国伦敦的数据科学家。但我找到第一份数据科学家工作的过程绝非易事。我已经申请了50多个角色,做了几次面试,其中一些是纯粹的技术或包括现场编码。在此期间,我学到了很多,我想分享五个可以帮助你找到第一份数据科学家工作的技巧:
这似乎很明显,但不幸的是,识别你不知道的东西并不容易。更糟糕的是,你可能认为你知道,但你不知道。让我举一个例子:在训练营期间,我使用SCIKIT-Learn的logistic回归创建了几个机器学习模型。我几乎直观地调优了惩罚参数,特别是在L1和L2之间,它们分别指套索和脊。到目前为止还好。
在我的第一次面试中,我决定加入这些概念来展示一些知识,但事与愿违。当我试图解释这种差异时,我意识到我知道如何应用它们,但我不明白背后的概念(更不用说数学了)。不用说,我没有得到那份工作。在这里,我的建议是深入研究一些项目,直到您逐行了解您的代码。试着在模拟面试中向其他同事解释为什么你选择了每个模型和参数。在去面试之前你会注意到许多可以填补的空白。这样做,你也会听起来流利地使用正确的术语,并感到自信地解释你的工作。
如果你真的想在你的头几个月里找到一份数据科学家的工作,那么你应该向那些有很多经验的人学习。老师和助教是很好的信息来源,所以每天都和他们说话。问一个关于招聘流程、面试以及如何管理与招聘人员的对话的问题,以了解更多关于公司和角色的信息。
另外,我和另外两个训练营的校友一起创建了一个slack频道。在这个频道中,我们分享我们的简历、求职信、面试和测试的反馈。我们讨论了面试问题和答案,我们总是分享我们的代码和笔记本来帮助对方。不要害怕分享你的工作,而是学会一起工作。毕竟,你的目标是一样的:尽快成为一名数据科学家。
你没有数据科学家的“商业经验”,这应该会让任何招聘人员感到惊讶。只要看一下你的简历,任何人都能看出你正在寻找你的第一份工作。也就是说,不要试图把自己推销为专家数据科学家(来自Kaggle projects),这不是你现阶段最有价值的技能。
在我得到Nextdoor的工作机会后,人力资源经理给了我八次面试的反馈。它可以概括为一个“赞成”和一个“反对”:我渴望学习,但我没有编码经验。我所学到的是,招聘经理正在寻找那些热衷于学习新事物并跟上行业的人。
所以,表现出你是一个好奇的人,你喜欢学习数据相关主题的过程,你每天都在练习编码。展示你对数据、计算机科学、统计学领域的热情。您对持续学习的动机和承诺将(而且应该)超过您当前的编码技能。
在没有经历过的情况下知道自己想要什么有点抽象。你怎么知道你想成为一名数据科学家,而不是机器学习工程师、数据工程师或数据分析师?起初,所有这些职位看起来都很相似,也许你会接受其中任何一个作为你的第一份工作。嗯,我一开始就是这么想的,这是个错误。
求职阶段的关键区别在于面试的准备。如果你知道你想要一份数据科学家的工作,请确保你确切地知道数据科学家是做什么的。当你研究的时候,一些细微差别会开始凸显出来。例如,数据科学家倾向于不使用数据分析师使用的Tableau或数据工程师使用的Docker。您不必开发广泛的数据科学知识,相反,您可以提高您在新工作中所需的深度。一些例子包括Pandas、Numpy、Scikit-learn线性和logistic回归、matplotlib和Seaborn。如果你掌握了这些,我相信你很快就会得到一份数据科学家的工作。
我怎么强调都不为过:请习惯被招聘人员、招聘经理和公司拒绝。在寻找第一份数据科学家工作的过程开始时,你的积极性很高,没有什么能阻止你。
然而,随着几周时间的流逝,拒绝信不断出现在你的收件箱里,你的动力水平不可避免地崩溃了。有很多数据科学家的角色,以及越来越多的候选人。此外,招聘过程很慢,但从候选人的角度来看要慢得多。我在新工作两个月后收到了拒绝的电子邮件。不管怎样,被拒绝是很自然的。
一个让你的动机保持高昂的想法是与一群正在经历同样过程的朋友分享。就像我之前说过的,与其他校友建立一个松弛的渠道,分享你的挫折。我相信他们也在经历同样的事情。这一点很重要,因为您会注意到您在编码方面并不是垃圾,这只是时间、一致性和努力的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18