
When looking at data scientist salaries and data science roles, it became obvious that there are different, more specific facets within data science. These facets relate to unique job positions, specifically, machine learning operations, NLP, data engineering, and data science itself. Of course, there are even more specific positions than these, but these can give you a general summary of what to expect if you land a job in one of these positions. I wanted to pick these four roles, too, because they can be separated well, almost as if it was there was a clustering algorithm that found jobs that were the most different between one another but that were also in the same population. Below, I will be discussing the average base pay with a low and high range, as well as respective seniority levels, the number of estimates used to determine these numbers, and expected skills and experiences for each role.
机器学习工程师倾向于将已经研究和构建的数据科学模型应用到生产环境中,通常包括软件工程和机器学习算法知识。话虽如此,你可以想象得到相当不错的薪水。这个特别的估计来自于GlassDoor[3]。
根据大约1900提交的工资,有以下广泛的范围:
正如你所看到的,这是一个范围,就像任何职位一样,你的经验越多,工资越高也就不足为奇了。除了多年的经验,你工作的州,你雇用的技能,公司也会努力创造最终的工资数额--所有这些职位都是如此。为了获得更多的粒度,我们可以查看不同的资历级别,以便了解级别的增加与工资数额的关系:
以下是一些来自个人经验的技能,您可以期望在机器学习职位上使用:
通常被称为NLP工程师,这个角色通常专注于将数据科学模型或机器学习算法应用于文本数据。NLP工作的一些例子是主题建模、大量文本、语义分析和chatbot代理。话虽如此,你也可以想象出相当不错的工资--然而,这个工资细目将低于机器学习工程师,很可能是因为这个角色不太包容,更专注于数据科学中的特定主题。这个特别的估计也来自于Glassdoor[5]。
根据大约20提交的工资,有以下广泛的范围:
值得注意的是,报告的工资数额相当低,所以对这个范围持怀疑态度,但尽管如此,对这个工资仍然有很高的信心。
所有这些数量都低于机器学习,然而,与大多数其他角色相比,它们仍然相当高。
以下是一些来自个人经验的技能,你可以期望在自然语言处理工程师的职位上使用:
也许一个更常见的角色是数据工程,它与数据科学比在数据科学之下更相关。然而,这个角色对数据科学工作来说仍然至关重要,有时,数据科学家可以期望知道数据工程师所知道的大部分内容,所以我将在本文分析中包括它。数据工程的一些示例包括创建存储最终用于数据科学模型的数据的ETL作业,以及自动存储模型结果和执行查询优化。这个特别的估计也来自于Glassdoor[7]。
根据大约~6,800提交的工资,有以下广泛的范围:
这个范围更类似于自然语言处理工程师的角色,然而,它可能与日常工作中的实际工作角色相距最远。同样重要的是要注意,这个职位涉及到相当多的估计。
以下是一些来自个人经验的技能,您可以期望在数据工程师职位上使用:
最后,但并非最不重要的,是数据科学家的角色。虽然这个角色看起来是最一般的,但实际上也可以是具体的,通常主要由模型构建过程组成--有时需要数据工程和机器学习工程师操作,但可能性较小--但仍然可能涉及自然语言处理方面的专业(通常如果重点是NLP,那么数据科学家将以此为标题--但不是一直)。这个角色还可以有更多的可变性,所以我们也可以期待一个广泛的范围。这个特别的估计也来自于Glassdoor[9]。
根据大约~16,200提交的工资,有以下广泛的范围:
出人意料地低于预期,这一角色在本分析中的大多数其他角色附近。话虽如此,它可能是对离群值最真实和稳健的,因为它是迄今为止提交来组成这些工资数额的最多的工资数额。
以下是一些来自个人经验的技能,您可以期望在数据科学职位上使用:
While these roles can have several similarities and differences, the same can be said about their salary ranges. Nearly three of the four salaries were similar, with one standing out. That role was machine learning engineer —why is that?My understanding is that this role requires a knowledge of most data science concepts, and especially their output, as well the software engineering involved around deployment — that is a lot to know and employ, so it makes sense why a role that composes both software engineering and data science pays so well. In addition to the salary breakdown of each data science role — or similar to data science in some way, were the skills that you can expect to employ, so that you can have a better idea of the role and how that relates to the salary amount.
总结一下,以下是我们分析的四个职位,以及你可以期望使用的技能:
我希望你觉得我的文章既有趣又有用。如果你同意这些数字和范围,请随时在下面发表评论--为什么或为什么不?你认为有一个角色,尤其是,离现实如此之远吗?你还能想到哪些数据科学角色会有不同的工资细分吗?一个角色的其他因素会影响薪水吗?
这些薪金是在美国报告的,因此它们是以美元数额计算的。我与这些公司中的任何一家都没有关联。
请随时查看我的个人资料和其他文章,并在LinkedIn上联系我。
[1] Photo byThought CatalogonUnsplash, (2018)
[2]Photo Byassed PhotographyonUnsplash,(2018)
[3]Glassdoor,Inc.,机器学习工程师工资,(2008-2021)
[4]Photo Bybatrick TomassoonUnsplash,(2016)
[5]Glassdoor,Inc.自然语言处理工程师工资,(2008-2021)
[6]Caspar Camille RubinonUnsplash的照片,(2017)
[7]Glassdoor,Inc.,数据工程师工资,(2008-2021)
[8]照片byDaria NepriakhinaonUnsplash,(2017)
[9]Glassdoor,Inc.,数据科学家工资,(2008-2021)
Bio: Matthew Przybyla is Senior 数据科学家 at Favor Delivery, and a freelance technical writer, especially in data science.
原创。经允许转发。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16