
来源:丁点帮你
作者:丁点helper
之前的文章讲了如何用R绘制箱形图,以此来帮助我们了解数据的整体分布情况、是否存在异常值。除此之外,箱形图还可以进行数据的组间比较。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
本次我们用到的是学生的课堂调查数据,包括了性别、年级、专业、身高、最喜欢的动物(讲数据清理时用的是这个变量,还记得吗)等变量。数据名:survey.csv,数据链接:
首先导入数据,存入survey这个数据集中:
survey <- read.csv("//Users//Desktop//survey.csv",
header = TRUE) # 获取数据中包含的变量名 names(survey)
[1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" "Exercise" [10] "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" "Pulse"
接下来我们以Gender作为分组依据,先来看看这个变量的情况。
table(survey$Gender) Choose not to answer Female Gender non-conforming Male 1 1 117 1 118
我们发现,除了female和male,有的同学回答了Choose not to answer,Gender non-conforming,还有同学什么都没填,空缺。
今天我们暂时将这三种特殊情况从数据中删去。
# 查看针对Gender这个变量,同学们有几类回答 levels(survey$Gender)
[1] "" "Choose not to answer" "Female" "Gender non-conforming" "Male"
在这五类回答中,我们想保留的是第3、第5类。也就是说,仅保留Gender为"Female" 或 "Male"的记录。
# 把更新后的数据存储在survey2这个对象中 survey2 <- survey[survey$Gender %in% levels(survey$Gender)[c(3,5)],]
这里,a %in%b的作用是,用a中的元素去匹配b中的任意元素,如果匹配成功,则返回结果为TRUE,反之,则结果为FALSE。
此时,上面的语句就简化为如下所示,c()里面是TRUE和FALSE的集合,是a中每个元素与b匹配的结果。
survey2 <- survey[c(),] # 这是为了便于理解写的简化语句,不能够运行的
survey2中仅保留了匹配结果为TRUE的记录:
table(survey2$Gender) Choose not to answer Female Gender non-conforming Male 0 0 117 0 118
哎?虽然记录被删了,但Gender中之前包含的五个类都还在,用下面的droplevels()这个函数删掉那些没有记录的类。
survey2$Gender <- droplevels(survey2$Gender)
table(survey2$Gender)
Female Male
117 118
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
数据清理好之后,我们以身高HtCm这个变量为例,先用之前讲过的方法绘制箱形图,了解改变量的整体分布,然后对比性别之间的身高差异。
boxplot(survey2$HtCm, main="Boxplot of Ht in cm", col='orange', lwd=2)
一目了然,我们调查的是大学学生,却出现了身高小于100厘米的情况,不符合常理。现在去检查一下原始数据。
sort(survey2$HtCm) # 将身高从小到大排序
部分结果截图
实际操作中,大家要尽量核实那些极端身高数据的真实情况,修正数据。这里我们为便于教学,直接把那些小于100厘米的身高值记录为缺失。
然后利用整理后的身高数据绘制箱形图。
survey2$HtCm[survey2$HtCm < 100 ] <- NA
boxplot(survey2$HtCm, main="Boxplot of Ht in cm",
col='orange', lwd=2)
最后绘制不同性别学生的身高箱形图。
boxplot(survey2$HtCm~survey2$Gender,
main="Boxplot of Ht in cm",
col=c(2,3), lwd=2)
由图可知,男生的身高基本都高于女生。将两个箱形图放在一起,可以清晰地看到两组变量的大致情况,便于给两组做粗略的比较。
但是这男女生身高到底有没有统计学上的差异,肉眼是很难得出结论的,统计学上怎么做呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26