
这次我们聊聊“违规识别”模型,在有的行里也被称为“三反”模型。这类模型的一个共同特点是获得明确标签(Y)的成本很高、主要特征提取自交易(有动帐)和行为(无动帐)数据的RFM模型及其衍生变量,和通过这些交易和行为数据构建时、空、网的关联关系而获取的衍生特征。这里需要强调一下,申请反欺诈和交易反欺诈在以上三方面存在明显差别。虽然申请反欺诈也会用到复杂网络,但是仅使用联系人、设备等信息构建的复杂网络,而不是依据交易流水做的复杂网络。
很多人在分析“三反”问题是都遇到难以清晰分类的问题。这是很正常的现象,因为这三者往往是伴生的。如果一定要分清楚的,不妨可以这样来区分:洗钱的交易发起者是用户本身,交易欺诈的发起者非用户的其他人,舞弊的交易发起者是内部员工。
笔者曾经在和客户沟通时,甲方反应反舞弊和反欺诈的差别很大。诚然,在业务理解上确实差别很大。但是在模型抽象的角度,这三个主题建模时,其标签的数据特征、取数窗口的设置、特征的提取方式是沿用的一套框架。因此可以统一来讨论其建模问题。
我们再强调一下建模的三个原则,即以成本-收益分析为单一分析框架、区分分析主体和客体两个视角、全模型生命周期工作模板。
我们这里以舞弊为例,讨论一下从事舞弊活动的人的成本-收益。舞弊的成本较明确,那就是事情败露后面临的处分、开除、经济处罚或刑事处罚。收益也很明确,那就是从事舞弊行为获得的收入。也就是说在舞弊行为分析中,成本-收益可以看似固定的。那为什么一个人有时候刚正不阿,而有时候禁不住诱惑呢?主要的问题是其内心发生了变换。如下所示的“舞弊三角”理论中,压力和动机是最关键的,这往往是外部事件,推动者行为人心中的砝码发生偏移,从而酿成悲剧。
建立违规识别模型的一个最重要的问题是对这个业务问题认识不足。很难有业务专家可以清晰的知道所有违规类型,每一次做这类项目,总是本着抓大放小的原则,针对最关心的一些“洗钱”、“交易欺诈”或“舞弊”的类型进行识别。同时样本的标签也是相互混淆的,因为犯罪份子可不会每次只按照洗钱“教科书”中的一种违规行为做事,比如地下钱庄和其他洗钱类型往往是伴生的。第二个难点是PU问题,即违规份子的行为没有被全部识别出来,也没有明确的类罪相对应。
由于违规识别模型有以上问题,因此需要两到三步才能处理好以上问题。比如针对第一类问题,需要使用到无监督的异常学习算法将与正常交易有明显差异的交易提取出来供下一步分析。针对第二个问题,目前主要是依赖业务人员手工审核。清洗干净的数据才会用于建模。
“三反”模型统一使用“黑名单”、“规则引擎”、“机器学习”、“ 复杂网络特征构建和无监督”。看过“越狱”的读者可能有印象,那里在分析犯罪时就会使用复杂网络作为分析工具。之所以现在这类技术被广泛使用,主要得益于开源大数据分析平台极大的降低了建设成本,使得可以基于全量的交易数据构建复杂网络和异常识别模型。因为这两类模型是不应该对数据抽样的。
之前很多人认为构建风控模型一定要可解释,因此一定要使用逻辑回归,甚至还要求必须制作评分卡之类的产出物。这种要求在“三反”模型中是不适宜的。因为违规交易的子类型太多了。虽然每一种违规行为和正常交易的客户有可能是线性可分的。但是如下图“问题4”所示,具有违规标示的样本是按群聚集的,而不同类的群是分散的。因此使用一个逻辑回归构建起的线性模型的精确度是很低的。需要使用组合算法构建非线性模型。
以上提到,违规识别模型需要从大量交易流水中提取交易特征和复杂网路特征。而且此类模型建模是不建议采用抽样的方式。因此使用分布式计算平台对数据进行加工是不可避免的。以下列出了主要模块,即数据源采集、图数据库、特征工程平台、机器学习平台。
下面这是一家金融机构的经历。由于传统的“三反模型”的规则很少是数据驱动的,而且及时是数据驱动的,规则的准确性也是很低的。通过构建无监督学习模型,使用异常识别算法,在降低了原模型15%召回率的情况下,预测精度提升了60倍。在使用有监督机器学习模型,并充分提取交易网络信息后,召回率无降低的请款下,模型精度提高了80倍。模型上线后,可以极大的减少“三反”调查人员的工作量。不过需要强调一点,本例中使用的样本是业务人员手工梳理的,模型效果容易做到指标上好看。
数据资管出品
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26