京公网安备 11010802034615号
经营许可证编号:京B2-20210330
年轻气盛时,总想拿更高的工资;步入中年时就图个稳定,一有裁员的风吹草动便紧张个半死,这是很多普通人的职场生涯写照。
无论你处于哪个阶段,希望能明白一个道理,决定收入和安稳的因素,并非无怨无悔的勤奋加班,也不是日积月累的丰富经验。
而是,你所从事的岗位是否具备稀缺性,在给企业创造价值的同时,你是否是不可替代的,你的能力是否“越老越吃香”。
行业越朝阳,能力越稀缺,越容易拿到高工资,也不会轻而易举在企业困难期被裁掉,即便被裁,找新工作也不会太难。
什么是人才稀缺性?通俗讲,指人才需求缺口大,但供不应求,给大家举些例子。
栗子一:理性数据分析,辅助实战经验,已成各企业高层主流的决策依据。企业对业务及数据分析能力过硬的人才需求越来越大,缺口达150万。
然而,目前的高校尚未向社会输出专门的数据分析人才。故而,以实操性为主导的数据分析具备稀缺性。
栗子二:与2015年相比,数字化人才的整体需求量暴增了11倍,除高尖端企业对这类求职者需求量大之外,传统金融行业亦迫切需要这类新鲜血液的注入,所以这类人才也拥有稀缺性。
人们往往认为稀缺是因岗位难度大,所以才难以找到替代的人,工资自然也高,这种想法误导了很多人。
其实,想“成为不可轻易替代的人”并没有那么难,就看努力的方向是否正确。小编总结了几点,希望能帮到大家。
●成为领域专家●
想拥有安全稳定的职场发展,成为某个领域的专家是不二之选,只要你将专业技能吃透,在这个领域的不可替代性就越高。
专业技能值越高,抗打能力就越强。这个方向需要持之以恒的稳定性,正如数据分析师一样,从事年限越长,薪资才会水涨船高。
数据分析师不同工作时长的薪资
●不给自己设限●
在职业生涯中,一定不要给自己设限,要充分了解自己的天赋与优势,选择适合的岗位或项目从事,并不断提升自己的综合能力。
获得更多机会,更多元化发展,从事一些工作范围外,对他人或企业有价值的事情,从而成长为不可替代的骨干。
●学会营销自己●
职场上也要学会自我营销,要形成这样的意识“你不仅仅是企业员工,更是你自己。”
原腾讯副总裁吴军通过在公司内部博客上,写一系列数学文章来建立个人知名度,为后期出版《数学之美》预备了素材。
职场精英可在干好工作的同时营销自己,一旦形成了个人品牌效应,不可替代性会大幅度增强。
●学习跨界技能●
当你成某领域专家时,不妨打破思维,学习些其他领域的实用技能。如:从事市场、行政、财务等岗位的职场人,会选择数据分析作为自己的扩展技能。
将数据分析思维运用于工作中,尤其是特别流行的Python办公自动化,让自己从繁琐的工作中解放出来,有更多的时间去思考更有意义的事。
稀缺岗位课程推荐
为传授符合企业标准的实用数据分析技术,CDA从理论知识到实际应用,结合金融、电商、互联网等热门行业的精选案例,帮助学员学以致用,成为企业抢手人才,占先机。
同时,课程拥有强大师资阵容,由至少10位以上相关领域的专家进行教授,特别适合每一个你。
不仅如此,就业班还为成功毕业的学员,开通了就业直通车,为其推荐相关工作单位。
同时,报名参加CDA数据分析师培训课程的学员或企业,还可申请政府补贴,每人每年合计最高可达1万元,具体的补贴标准请详细咨询哦!
立刻咨询课程
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07