
来源:早起Python
作者:陈熹、刘早起
大家好,又到了Python办公自动化(偷懒)专题。
今天介绍的案例是如何利用Python来自动化移动、修改、重命名文件/夹,这样的操作在日常办公中经常会用到,若能掌握用Python实现将会大大提高效率!
所以我希望能够通过这篇文章来让大家了解:如何基于 os glob 和 shutil 对文件管理的综合运用!
为了让本文介绍的案例更有通用型,我新建了一个文件夹 files1 存放着 1800+ 个文件,如下所示:
需要完成的内容如下
“
将 1835 个文件移动到新文件夹 file2,并且重命名文件,名字开头加上 序号 和 “终稿” 两个字,如名字更改为 “1-终稿-xxxxx(原文件名)”
”
你心里可能想着:这是人做的事??? 但确实这是真实的需求,文件批量重命名非常常见,如果没有一些技巧,那么只能耗费大量的时间和人力去做。这里的技巧,就是 Python
另外还有一个问题:要先移动再重命名还是先重命名再移动呢? 继续往下看!
真实的办公场景并不会这样的需求,毕竟谁想要无端给自己的电脑产生大量无用文件呢(也不要给别人的电脑乱用)
不得不提,生成随机文件能够帮助我们更好的测试自己 Python 文件管理的技能。如果你没有合适的文件夹和文件夹供自己练习,那么为什么不自己写个代码产生呢?
当然,在这个过程中我们也会学习一些知识点,先看代码:
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
file = open(r"C:\xxx\file1" + random_str + ".txt", 'w+') # 前面路径是产生文件的目标文件夹
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
file.close()
通过 string 就可以获得所有的字母和数字,利用 random.sample() 常规接受两个参数,一个是抽样的范围,一个是抽样的次数,默认是放回抽样。这样就可以在给定的字母数字范围内随机抽取 1-10 个,但是返回的结果注意是列表,需要再用 .join 方法完成字符串拼接
用随机产生的名字生成文件后,再在其内部用类似的方法随机写入一些内容:
上面的写法不够优雅,因为需要配套使用 file.close() 释放,更好的方法是直接利用上下文管理器 with 结构,减少出错的几率
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
with open(r"C:\xxx\file1" + random_str + ".txt", 'w+') as file:
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
因为即使是随机产生名字,但抽样的范围和次数不大决定了 2000 次抽样会有一些抽签组合成的名字完全一样,后面形成的文件会覆盖之前产生的文件,最终导致产生的文件没有 2000 个。
需要用到内置库 os 的 os.rename() 方法
import os os.rename('practice.txt', 'practice_rename.txt') # 重命名文件 os.rename('文件夹1', '文件夹2') # 重命名文件夹
虽然需求中有重命名文件的需求,但实际上并不需要直接借助这个方法
需要用到内置库 shutil 的 shutil.move 方法
import shutil
shutil.move(r'.practice.txt', r'.文件夹1/')
shutil.move(r'.practice.txt', r'.文件夹1/new.txt')
注意到上面后两行代码的区别吗?前一行是将目标文件移动到目标文件夹里,而后一行,在将目标文件移动到目标文件夹里的同时,能够对其进行重命名
也就是说,我们并不需要用 os.rename 先命名文件再用 shutil.move 将其移动的指定文件夹,而是可以用 shutil.move 一步到位。
采用基于 glob 库的迭代框架:
import glob
path = xxx for file in glob.glob(f'{path}/**/*.xlsx', recursive=True):
pass
上面的代码能够获取给定路径内部所有文件夹下的 Excel 文件(.xlsx 格式), recursive 参数默认为 False,当为 True 时允许逐级遍历
而本例需要获取给定文件夹下的所有 .txt 文件,则更加简单:
import glob
path = xxx for file in glob.glob(f'{path}/*.txt'):
pass
在上面一节我们已经把需求拆分为多个小块并理清了思路,现在可以开始写代码了。首先导入需要的库
import os import shutil import glob
path = r"C:xxx" # 存放大量需更名移动文件的文件夹路径的上一级路径
上文提到,不需要利用 os.rename 那为什么要导入 os 库呢?
一方面因为要通过这个库产生新的文件夹。也可以手动完成,但交给代码多了判断也不容易出错:
if not os.path.exists(path + r'file2'):
os.mkdir(path + r'file2')
另一方面下文还会用它获取文件名,然后就可以移动更名一步到位,glob 迭代文件框架遍历获取文件绝对路径:
count = 1 # 生成序号 for file in glob.glob(f'{path}\测试\*.txt'):
# 这里是文件绝对路径,可以用字符串方法直接替换修改,但为了方便理解我还是用路径拼接 filename = os.path.basename(file)
shutil.move(file, path + r'file2' + f'{count}-终稿-{filename}')
count += 1
看到没,Python、3秒、搞定、干饭!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28