
第二届中国互联网基础资源大会(CNIRC 2020)召开,会上指出中国数字经济规模从11万亿元,增长到2019年的35.8万亿元,占GDP比重超36%,对GDP贡献率达到了67.7%。
2021年,数字经济规模或持续快速增长。可见,数字经济正在聚集强大的内需力量,将成社会势不可挡一次变革,疫情没改变这个趋势,反而加速了这个趋势。
未来的世界,在所有不确定性中或有几项非常确定,一是整个国家数字化方向非常确定;二是未来十年传统行业数字化非常确定。
数字经济和实体经济是一体两面,随着科技的日新月异,对人工智能和大数据人才的整体需求量,比2015年增加了11倍,数字经济人才缺口巨大。
大数据决定高校专业开设导向,2020年清华大学停止了新闻学和会计学专业的本科招生,新增了一个招生专业:计算机与金融双学士学位项目。
可见,数字化金融正在逐渐普及,除高尖端企业对这类求职者需求量大之外,传统金融行业也迫切需要这类新鲜血液的注入,故而未来数据经济型人才将受到全社会的青睐。
智能操作风控
众所周知,金融行业几乎所有环节都与数据息息相关,数字化已成金融科技创新的首要任务。
未来几年内,各大金融企业急需培养一批具备相应业务知识,且能够较为熟练掌握各类数据分析工具的专业人才,用大数据来驱动业务的决策。
同时,随着数字经济的飞速发展,各大金融企业为跟上时代的进程,亦纷纷制定了数字化转型愿景和战略,力图加快企业的数字化进程。
这趟数字经济快车,承载着无数的机会与发展,它抛出了无数橄榄枝,成数字经济型人才方能抓住这个大好机会,你准备好了吗?
为助力对金融行业感兴趣的高年级学生或从业者,顺利数字化转型。CDA历经5年研发,3年内训实践,重磅推出了“金融数字化转型人才训练营”。在原有CDA数据分析师认证体系基础上,突出金融行业的数据应用特点。
同时,与国际知名企业架构Togaf、数据管理和治理体系DMBOK、IT治理COBIT认证体系相融合,培养学员建立金融数据应用理论框架和实操落地的能力。
“金融数字化转型人才训练营”为大家精彩呈现了如何发现业务问题、整理数据、建立模型、编写报告、构建业务应用数字化解决方案。
同时,更是力图为金融从业者提供个人数字化转型的解决方案,转型成为组织内部数字化赋能者。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28