
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话!今天我们聊一聊 python分析“打工人”
最近,“打工梗”在朋友圈持续爆火,没有人能避开来自工友的贴心问候——“早安,打工人”,与此同时“打工人”的表情包也席卷全网,铺天盖地,到处吟唱着积极向上的打工人语录。
“累吗?累就对了,舒服是留给有钱人的。早安,打工人!冷吗?冷就对了,温暖是留给开小轿车的人。早安,打工人!”
相比于先前带点“丧”的社畜梗,打工梗用昂扬积极的心态去对抗工作的焦虑,这些打工人语录带着自嘲,也是认清生活本质的解压方式,用较为轻松接地气的玩梗心态,迎接每一天的新工作。
打工梗究竟为什么突然这么火呢?之前小z在《打工人分析简报》中已经分析了各个平台打工人话题的相关数据,我们从中也受到了些启发。
今天我们就来主要分析一下B站上“打工人”的相关视频,看看这6625个视频的背后,打工梗凭什么突然刷屏网络。
我们使用python获取,技术分析流程分为以下三个步骤:
爬虫部分代码暂略,首先导入分析所需的包并读入数据集,原数据集一共包含6625个样本,7个字段,字段含义为:分区标签、视频标题、上传时间、观看数、弹幕数、up主、视频url。
01、数据读入
# 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt
# 读入数据 df = pd.read_excel('./data/B站打工人视频10-28.xlsx') df.head()
print(df.shape) (6625, 7)
02、数据预处理
此部分我们初步对原始数据进行处理,其中包含:
处理之后的数据如下所示:
def transform_unit(x_col): """ 功能:转换数值型变量的单位 """ # 提取数值 s_num = df[x_col].str.extract('(d+.*d*)').astype('float') # 提取单位 s_unit = df[x_col].str.extract('([u4e00-u9fa5]+)') s_unit = s_unit.replace('万', 10000).replace(np.nan, 1) s_multiply = s_num * s_unit return s_multiply
# 去重 df = df.drop_duplicates() # 删除列 df.drop('video_url', axis=1, inplace=True) # 转换单位 df['view_num'] = transform_unit(x_col='view_num') df['danmu'] = transform_unit(x_col='danmu') # 筛选时间 df = df[(df['upload_time'] >= '2020-09-01') & (df['title'].astype('str').str.contains('打工人'))] df.head()
03、数据可视化分析
首先导入所需包,其中jieba用于中文分词,pyecharts用于绘制动态可视化图形,stylecloud包用于绘制词云图。关键部分代码如下:
import jieba from pyecharts.charts import Bar, Line, Pie, Map, Scatter, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False
01 打工人视频发布热度走势图
可以看到“打工人”相关视频首先出现在2020年9月5日,最初的一个月还没有引起太大的水花。在一个月后,随着打工梗逐渐深入人心,B站相关视频也出现了爆点。
10月16日,up主“老摸鱼艺术家”的《加油!打工人!》播放量突破350万。几天后,10月22日,up主“三Lu有毒”的视频《早安,打工人!》更是加上了各种打工人优秀语录,同时配上魔性的画面和声音,直接在B站爆火,目前该视频播放量已突破913万。
随后“打工人”的视频如雨后春笋般涌现,单10月27日一天就有292条视频发布。
time_num = df.upload_time.value_counts().sort_index() time_num[:5] 2020-09-05 1 2020-09-08 1 2020-09-09 1 2020-09-12 1 2020-09-13 1 Name: upload_time, dtype: int64
# 条形图 line1 = Line(init_opts=opts.InitOpts(width='1350px', height='750px')) line1.add_xaxis(time_num.index.tolist()) line1.add_yaxis('', time_num.values.tolist(), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='min'), opts.MarkPointItem(type_='max')]) ) line1.set_global_opts(title_opts=opts.TitleOpts(title='打工人视频发布热度走势图', pos_left='40%'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='90')), visualmap_opts=opts.VisualMapOpts(max_=int(time_num.max()), is_show=False), ) line1.set_series_opts(linestyle_opts=opts.LineStyleOpts(width=3), label_opts=opts.LabelOpts(is_show=False) ) line1.render()
02 不同分区的视频发布数量
从视频分区中可以看到,生活区以56.6%的比重占据了半壁江山。
03 不同分区的视频发布播放量
播放量方面也是生活区一枝独秀,累计达到1393万。
04 最高播放的Top10视频
那么都是哪些“打工人”视频播放量最高呢?
我们分析整理了播放量前十的视频,播放量第一是up主“三Lu有毒”的《早安,打工人!》,截止到发稿播放量已达到913万。第二是up主“老摸鱼艺术家”的《加油!打工人!》,截止到发稿播放量已达到357万。
接下来我们对播放量第一第二的“打工人”视频弹幕进行分析,看看大家都在说些什么。
05 早安,打工人!弹幕词云
弹幕中出现最多的就是“泪目”、“工人”。其中那句魔性的“靠恁娘是河南人”,也是引起了不少弹幕。魔性的狗子,激昂的语调也是让人听着十分上头,让人忍不住每天一遍,对自己说上一声“早安,打工人!”
06 《加油,打工人!》弹幕词云
“加油”、“打工人”、“真实”等都是妥妥的高频词。配上最近常被up用来二次创造的动画片《校园小子》,有“文艺复兴”那味儿了。
07 打工人标题词云图
我们最后对打工人视频出现的标题也进行了词云整理。发现标题中除了“打工人”,“早安”、“晚安”、“加油”、“日常”等正能量的词特别多,同时“快乐”、“人上人”等词也在标题中常常出现。
结语
人人都不爱打工,但人人都是打工人。
虽然这些打工人的段子里多少带着些对生活压力的自嘲和调侃,而最火的那句“早安打工人”里,怀着的也还是对新一天的期望。
加油吧,打工人!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11