京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话!今天我们聊一聊 python分析“打工人”
最近,“打工梗”在朋友圈持续爆火,没有人能避开来自工友的贴心问候——“早安,打工人”,与此同时“打工人”的表情包也席卷全网,铺天盖地,到处吟唱着积极向上的打工人语录。
“累吗?累就对了,舒服是留给有钱人的。早安,打工人!冷吗?冷就对了,温暖是留给开小轿车的人。早安,打工人!”
相比于先前带点“丧”的社畜梗,打工梗用昂扬积极的心态去对抗工作的焦虑,这些打工人语录带着自嘲,也是认清生活本质的解压方式,用较为轻松接地气的玩梗心态,迎接每一天的新工作。
打工梗究竟为什么突然这么火呢?之前小z在《打工人分析简报》中已经分析了各个平台打工人话题的相关数据,我们从中也受到了些启发。
今天我们就来主要分析一下B站上“打工人”的相关视频,看看这6625个视频的背后,打工梗凭什么突然刷屏网络。
我们使用python获取,技术分析流程分为以下三个步骤:
爬虫部分代码暂略,首先导入分析所需的包并读入数据集,原数据集一共包含6625个样本,7个字段,字段含义为:分区标签、视频标题、上传时间、观看数、弹幕数、up主、视频url。
01、数据读入
# 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt
# 读入数据
df = pd.read_excel('./data/B站打工人视频10-28.xlsx')
df.head()
print(df.shape) (6625, 7)
02、数据预处理
此部分我们初步对原始数据进行处理,其中包含:
处理之后的数据如下所示:
def transform_unit(x_col):
"""
功能:转换数值型变量的单位
"""
# 提取数值
s_num = df[x_col].str.extract('(d+.*d*)').astype('float')
# 提取单位
s_unit = df[x_col].str.extract('([u4e00-u9fa5]+)')
s_unit = s_unit.replace('万', 10000).replace(np.nan, 1)
s_multiply = s_num * s_unit
return s_multiply
# 去重
df = df.drop_duplicates()
# 删除列
df.drop('video_url', axis=1, inplace=True)
# 转换单位
df['view_num'] = transform_unit(x_col='view_num')
df['danmu'] = transform_unit(x_col='danmu')
# 筛选时间
df = df[(df['upload_time'] >= '2020-09-01') & (df['title'].astype('str').str.contains('打工人'))]
df.head()
03、数据可视化分析
首先导入所需包,其中jieba用于中文分词,pyecharts用于绘制动态可视化图形,stylecloud包用于绘制词云图。关键部分代码如下:
import jieba from pyecharts.charts import Bar, Line, Pie, Map, Scatter, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False
01 打工人视频发布热度走势图
可以看到“打工人”相关视频首先出现在2020年9月5日,最初的一个月还没有引起太大的水花。在一个月后,随着打工梗逐渐深入人心,B站相关视频也出现了爆点。
10月16日,up主“老摸鱼艺术家”的《加油!打工人!》播放量突破350万。几天后,10月22日,up主“三Lu有毒”的视频《早安,打工人!》更是加上了各种打工人优秀语录,同时配上魔性的画面和声音,直接在B站爆火,目前该视频播放量已突破913万。
随后“打工人”的视频如雨后春笋般涌现,单10月27日一天就有292条视频发布。
time_num = df.upload_time.value_counts().sort_index() time_num[:5] 2020-09-05 1 2020-09-08 1 2020-09-09 1 2020-09-12 1 2020-09-13 1 Name: upload_time, dtype: int64
# 条形图 line1 = Line(init_opts=opts.InitOpts(width='1350px', height='750px')) line1.add_xaxis(time_num.index.tolist()) line1.add_yaxis('', time_num.values.tolist(), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='min'), opts.MarkPointItem(type_='max')]) ) line1.set_global_opts(title_opts=opts.TitleOpts(title='打工人视频发布热度走势图', pos_left='40%'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='90')), visualmap_opts=opts.VisualMapOpts(max_=int(time_num.max()), is_show=False), ) line1.set_series_opts(linestyle_opts=opts.LineStyleOpts(width=3), label_opts=opts.LabelOpts(is_show=False) ) line1.render()
02 不同分区的视频发布数量
从视频分区中可以看到,生活区以56.6%的比重占据了半壁江山。
03 不同分区的视频发布播放量
播放量方面也是生活区一枝独秀,累计达到1393万。
04 最高播放的Top10视频
那么都是哪些“打工人”视频播放量最高呢?
我们分析整理了播放量前十的视频,播放量第一是up主“三Lu有毒”的《早安,打工人!》,截止到发稿播放量已达到913万。第二是up主“老摸鱼艺术家”的《加油!打工人!》,截止到发稿播放量已达到357万。
接下来我们对播放量第一第二的“打工人”视频弹幕进行分析,看看大家都在说些什么。
05 早安,打工人!弹幕词云
弹幕中出现最多的就是“泪目”、“工人”。其中那句魔性的“靠恁娘是河南人”,也是引起了不少弹幕。魔性的狗子,激昂的语调也是让人听着十分上头,让人忍不住每天一遍,对自己说上一声“早安,打工人!”
06 《加油,打工人!》弹幕词云
“加油”、“打工人”、“真实”等都是妥妥的高频词。配上最近常被up用来二次创造的动画片《校园小子》,有“文艺复兴”那味儿了。
07 打工人标题词云图
我们最后对打工人视频出现的标题也进行了词云整理。发现标题中除了“打工人”,“早安”、“晚安”、“加油”、“日常”等正能量的词特别多,同时“快乐”、“人上人”等词也在标题中常常出现。
结语
人人都不爱打工,但人人都是打工人。
虽然这些打工人的段子里多少带着些对生活压力的自嘲和调侃,而最火的那句“早安打工人”里,怀着的也还是对新一天的期望。
加油吧,打工人!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27