京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:陈熹
来源:早起Python
大家好,又到了python办公自动化专题。在之前我们详细讲解过如何使用Python自动更新Excel表格并调整样式,在上次的自动化案例中要求两个或多个Excel表格数据要匹配/对称才能够自动更新,今天我们再次来解决在数据不对称的情况下如何自动更新表格,这是更常见的情况,也是我遇到的一个具体需求。
现在我们有类似如下一份记录了口袋妖怪名字的分组名单:(未全部展示,实际有A-U组+1个"未分组")
现在有一份更新的名单(仅含名字)
需要根据这份新名单对原来的总表进行更新,即对新名单中的名字按照总表的分组进行更新,剔除不在新名单中的名字,并将新名单中新出现的名字划分到“未分组”中,如上图中的“早小起”
这位读者的需求是一个需要长期重复的任务,每隔一段时间就会拿到一个新名单,需要对总名单进行调整。如果用Excel操作,可能需要反复查找新名单的名字在哪个分组,如果不存在则手动添加到“未分组”,存在则做标记。最后把未做标记的名字删除再删除空隙即可,整个过程十分繁琐,而且若总名单有千万个名字则工作量非常大。因此该工作很适合用Python辅助自动化
Python实现
第一步是导入需要的库并把路径设置好,我还是习惯用函数定位到桌面上利于复用
import os import pandas as pd import numpy as np def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop') path = GetDesktopPath() + '\\data\\'
接着读取两份文件
df1 = pd.read_excel(path + '总名单.xlsx',encoding = 'utf-8',sheet_name = 0,skiprows=1) df2 = df1.iloc[:,1:23] df3 = pd.read_excel(path + '新名单.xlsx',encoding = 'utf-8',sheet_name = 0)
接下来是根据新名单中出现的名字找各自在总表中的分组,思路是用np.where,如下所示
np.where(df2 == '死神板') # (array([7], dtype=int64), array([5], dtype=int64))
返回元组,行列信息都在里面,那么用如下命令即可获得口袋妖怪“死神板”所在的分组
col = np.where(df2 == '死神板')[1][0] df2.columns[col] # 'F组'
有了个思路就可以写个函数,并用apply逐个运用到新名单里的名字上
这里要注意,新名单中的名字在总名单中可能没有,因此需要判断后再取最里面一层数字,否则会出错
def find(x): results = np.where(df2 == x)[1] try: return df2.columns[results[0]] except: return '未分组' df3['备注'] = df3['最新名单'].apply(find)
接下来这个操作就是根据分组把上面的数据框“劈开”
results_lst = [] for index,i in enumerate(df2.columns): results = df3.iloc[np.where(df3['备注']==i)[0].tolist(),0] # 重置索引很重要,为什么重要往下看 results = results.reset_index(drop=True) results_lst.append(results) results_lst
可以看到,结果是一个Series列表,这不正好是pd.concat的对象嘛,由于接下来要横向合并,因此每个Series需要重置索引保证都是从0开始
df_final = pd.concat(results_lst,axis=1) # 记得把列名还原 df_final.columns = df2.columns
整个需求就大致完成了 (两个非口袋妖怪的生物也被识别出来了)
df_final.to_excel(f'{path}整理后表格.xlsx',
encoding='gbk', # 编码不一定是gbk
index=False,
header=True)
最后就是保存并将结果以excel形式输出,如上图所示,我们就使用Python成功完成了一次Excel非对称表格的自动更新,接下来应该使用openpyxl进行样式的修改,而这一部分在之前的文章中有很详细的讲解,本文就不再展开。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01